

Glacial CO₂ drawdown due to particle ballasting by aeolian dust: an estimate using the ocean carbon cycle model MPIOM/HAMOCC

Malte Heinemann, Joachim Segschneider, and Birgit Schneider

Institute of Geosciences, Kiel University, Kiel, Germany (malte.heinemann@ifg.uni-kiel.de)

Particle ballasting refers to the acceleration of sinking organic soft tissue in the ocean by aggregation with denser particles such as calcite shells, opal shells, or mineral dust. The acceleration of organic soft tissue due to, for example, higher aeolian dust deposition rates, may have led to a more effective biological carbon pump during glacial periods compared to interglacial periods. Particle ballasting changes may thus have contributed to the variability of atmospheric CO₂ concentrations during glacial-interglacial cycles.

Here we quantify the effect of dust ballasting changes on the ocean-atmosphere CO₂ fluxes during the last glacial cycle using the Hamburg Ocean Carbon Cycle model HAMOCC. We introduce a new parameterisation of particle ballasting that accounts for the acceleration of the sinking of detritus by denser particles, including the effect of mineral dust. Sensitivity experiments with respect to glacial-interglacial aeolian dust deposition changes indicate that the acceleration of detritus by enhanced dust deposition during glacials played a small role, contributing about 5 ppmv to the reconstructed 90 ppmv drawdown of atmospheric CO₂ concentrations. Our results further suggest that the additional iron input associated with the increased dust deposition played a more important role, leading to a reduction of atmospheric pCO₂ by at least 8 ppmv, comparable to previous estimates of 10 to 30 ppmv.