

The Himalayas: The Other Seismogenic Zone

Marianne Karplus (1), Larry Bown (2), Judith Hubbard (3), Simon Klemperer (4), and Hiroshi Sato (5)

(1) Department of Geological Sciences, University of Texas at El Paso, El Paso, TX, 79968 United States, (2) Cornell, Earth and Atmospheric Sciences, United States (ldb7@cornell.edu), (3) Earth Observatory of Singapore, Nanyang Technical University, Singapore 63979, (4) Department of Geophysics, Stanford University, Stanford CA 94305-2215 United States, (5) Earthquake Research Institute of Tokyo University, Tokyo 1130032, Japan

The Mw 7.8 Gorkha, Nepal, earthquake that occurred on April 25 of this year was a dramatic reminder that great earthquakes are not restricted to the large seismogenic zones associated with subduction of oceanic lithosphere. Not only does Himalayan seismogenesis represents important scientific and societal issues in its own right, it constitutes a reference for evaluating general models of the earthquake cycle derived from the studies of the oceanic subduction systems. This presentation reports results of a Mini-Workshop sponsored by the GeoPrisms project that was held in conjunction with the American Geophysical Union on December 15, 2015, designed to organize a new initiative to study the great Himalaya earthquake machine.

The Himalayan seismogenic zone shares with its oceanic counterparts a number of fundamental questions, including:

- a) What controls the up-dip and down-dip limits of rupture?
- b) What controls the lateral segmentation of rupture zones (and hence magnitude)?
- c) What is the role of fluids in facilitating slip and/or rupture?
- d) What nucleates rupture (e.g. asperities)?
- e) What physical properties can be monitored as precursors to future events?
- f) How effectively can the radiation pattern of future events be modeled?
- g) How can a better understanding of Himalayan rupture be translated into more cost effective preparations for the next major event in this region?

However the underthrusting of continental, as opposed to oceanic, lithosphere in the Himalayas frames these questions in a very different context:

- h) How does the greater thickness and weaker rheology of continental crust/lithosphere affect locking of the seismogenic zone?
- i) How does the different thermal structure of continental vs oceanic crust affect earthquake geodynamics?
- j) Are fluids a significant factor in intercontinental thrusting?
- k) How does the basement morphology of underthrust continental crust affect locking/creep, and how does it differ from the oceanic case?
- l) What is the significance of blind splay faulting in accommodating slip?
- m) Do lithologic contrasts juxtaposed across the continental seismogenic zone play a role in the rheological behavior of the SZ in the same manner as proposed for the ocean SZ?