

Copernicus Climate Change Service Greenhouse Gases: Analysis of recent satellite derived CO₂ growth rates variation

Maximilian Reuter, Michael Buchwitz, Oliver Schneising, Stefan Noel, Bettina Gier, Heinrich Bovensmann, and John P. Burrows

University of Bremen, Institute of Environmental Physics, Bremen, Germany (mail@maxreuter.org)

Satellite-derived atmospheric CO_2 data products are being generated and made available by the Copernicus Climate Change Service (C3S, https://climate.copernicus.eu/). The C3S satellite greenhouse gas (GHG) sub-project (C3S_312a_Lot6) is led by University of Bremen supported by University of Leicester, SRON and CNRS-LMD. The first Climate Data Record (CDR) data set covers the time period 2003-2016 and consists of column-average dry-air mole fraction CO_2 and CH4 products, i.e, XCO₂ and XCH4, from SCIAMACHY/ENVISAT and TANSO-FTS/GOSAT. We present an overview of this dataset and results of a first scientific application namly an analysis of the recent variation of the atmospheric CO_2 growth rate influenced by human emissions and climate variability in particular ENSO.