

Ostracod $\delta^{18}\text{O}$ as a potential proxy for the pH and salinity of aquatic environments

Laurent S. Devriendt (1), Helen V. McGregor (2), Allan R. Chivas (2,3)

(1) NIOZ, OCS, Netherlands (laurent.devriendt@nioz.nl), (2) School of Earth and Environmental Sciences, University of Wollongong, Australia, (3) Department of Earth Sciences, University of Adelaide, Australia

This study presents a new understanding of the causes of ostracod $\delta^{18}\text{O}$ variations based on a global database of published ostracod $\delta^{18}\text{O}$ values in lake, marine and coastal environments, and from culture experiments. We demonstrate that the $\delta^{18}\text{O}$ of ostracod valves is not solely a function of the water $\delta^{18}\text{O}$ and temperature but also depends on the water pH and salinity. More specifically, the data show that: (1) the $\delta^{18}\text{O}$ of marine and non-marine ostracods reflects the $^{18}\text{O}/^{16}\text{O}$ of the sum of host water CO_3^{2-} and HCO_3^- ions. For example, at a given temperature, the $\delta^{18}\text{O}$ of non-marine ostracods decreases by 4‰ to 6‰ as $[\text{CO}_3^{2-}]/[\text{DIC}]$ reaches 70%, depending on the ostracod species. In low $[\text{CO}_3^{2-}]/[\text{DIC}]$ settings, ostracod $^{18}\text{O}/^{16}\text{O}$ is close to the $^{18}\text{O}/^{16}\text{O}$ of HCO_3^- ions, which explains why on average ostracod $\delta^{18}\text{O}$ is higher than the $\delta^{18}\text{O}$ of inorganic calcite precipitated slowly under the same conditions. (2) The sensitivity of ostracod $\delta^{18}\text{O}$ to $[\text{CO}_3^{2-}]/[\text{DIC}]$ varies from -0.1% to -0.06% per % of $[\text{CO}_3^{2-}]/[\text{DIC}]$ and strongly depends on taxonomy. This suggests that the $\delta^{18}\text{O}$ -offsets between ostracod taxa calcifying in the same environment vary with the water $[\text{CO}_3^{2-}]/[\text{DIC}]$. Because the water $[\text{CO}_3^{2-}]/[\text{DIC}]$ mainly depends on the water pH and salinity, the $\delta^{18}\text{O}$ -offsets between contemporaneous ostracod taxa from the same environment may serve as a proxy for both the pH and salinity of aquatic environments. Our study reconciles contradictory observations of controls on ostracod $\delta^{18}\text{O}$ and paves the way for improved paleoenvironmental interpretations and reconstructions of past water pH and salinity.