Geophysical Research Abstracts Vol. 20, EGU2018-18303-2, 2018 EGU General Assembly 2018 © Author(s) 2018. CC Attribution 4.0 license.

Tropospheric CH_4 sink via atomic Cl constrained by observations of carbon monoxide $^{13}C/^{12}C$ isotope ratios

Sergey Gromov (1,2) and Carl A. M. Brenninkmeijer (1)

(1) Max Planck Institute for Chemistry, Atmospheric Chemistry Dept., Mainz, Germany (sergey.gromov@mpic.de), (2) Institute of Global Climate and Ecology (IGCE) Roshydromet and RAS, Moscow

Next to the hydroxyl radical (OH), atomic chlorine (Cl) is often regarded as a potentially significant sink partner for methane (CH₄) in the troposphere (see, *e.g.*, [1] and refs. therein), as suggested by the analysis [2] of 13 C(CH₄) isotope observations in the remote marine boundary layer (MBL) in the extra-tropical Southern Hemisphere (ETSH) in 1994-2000. Subsequent theoretical work [3] indicates that methods of [2] are problematic and may yield spuriously large estimates of the 13 C(CH₄) sink effective fractionation (ε_{CH4}). The latter, inferred to be (7-15)‰, was attributed to a (2-4)% loss of CH₄ via Cl. Nonetheless, neither do [2] and [3] provide means of unambiguously rejecting the MBL CH₄+Cl sink hypothesis, nor do they account for variable and dissimilar (global) trends in CH₄ mixing ratio and δ^{13} C in the 1990s. On the other hand, a recent detailed study [4] suggest that up to 2.5% of the tropospheric CH₄ sink should occur via Cl, a figure surprisingly close to that of [2]. Therefore is the question: Can we constrain the tropospheric CH₄ Cl sink?

In an alternative approach we analyse the observations of carbon monoxide (CO) isotope ratios, which were performed in the ETSH MBL concomitantly. Produced in the CH₄oxidation cycle, CO allows an independent estimate of the changes to the 13 C(CH₄) sink effective fractionation, *i.e.* by looking at the main reaction product (as opposed to residual) of atmospheric CH₄. Using the results of the comprehensive AC-GCM EMAC model [5], we quantify the CH₄-derived fraction of CO in the ETSH and estimate the upper limit of the CH₄+Cl sink variations. These are very unlikely to have caused ε_{CH4} changes larger than $\pm 2\%$ in 1994-2000, even if the tropospheric yield of CO from CH₄ (the largest uncertainty factor of the CO tropospheric budget to date) were as low as 0.7. Furthermore, closing the ETSH and global 13 C(CO) budgets suggests that the Cl sink plays a very small role in the removal of CH₄ from the troposphere.

References

- 1. Houweling, S., et al.: Global inverse modeling of CH_4 sources and sinks: an overview of methods, Atmos. Chem. Phys., 17, 235-256, doi: 10.5194/172352017, 2017.
- 2. Allan, W., Struthers, H., and Lowe, D. C.: Methane carbon isotope effects caused by atomic chlorine in the marine boundary layer: Global model results compared with Southern Hemisphere measurements, *J. Geophys. Res. Atm.*, **112**, D04306, doi: 10.1029/06jd007369, 2007.
- 3. Lassey, K. R., Allan, W., and Fletcher, S. E. M.: Seasonal interrelationships in atmospheric methane and companion δ^{13} C values: effects of sinks and sources, *Tellus B*, **63**, 287-301, doi: 10.1111/.16000889.2011.00535.x, 2011.
- 4. Hossaini, R., *et al.*: A global model of tropospheric chlorine chemistry: Organic versus inorganic sources and impact on methane oxidation, *J. Geophys. Res. Atm.*, **121**, 14,271-214,297, doi: 10.1002/JD025756, 2016.
- 5. Jöckel, P., *et al.*: Development cycle 2 of the Modular Earth Submodel System (MESSy2), *Geosci. Model Dev.*, **3**, 717-752, doi: 10.5194/37172010, 2010.