Geophysical Research Abstracts Vol. 20, EGU2018-1833, 2018 EGU General Assembly 2018 © Author(s) 2017. CC Attribution 4.0 license.

Short-term effect of the nitrification inhibitor DMPP on N-turnover and denitrification losses from two agricultural soils in subtropical Australia

Johannes Friedl (1), Clemens Scheer (1), Evi Deltedesco (2), Markus Gorfer (3), David W. Rowlings (1), Peter R. Grace (1), and Katharina Keiblinger (2)

(1) Queensland University of Technology, Institute for Future Environments, Brisbane, Australia (johannes.friedl@qut.edu.au), (2) University of Natural Resources and Life Sciences, Department of Forest and Soil Sciences, Institute of Soil Research, Vienna, Austria, (3) AIT Austrian Institute of Technology, Center for Health & Bioresources, Tulln, Austria

Intense wetting and drying cycles render agricultural soils in the subtropics prone to nitrogen (N) loss via denitrification, with large pulses of the greenhouse gas nitrous oxide (N_2O) triggered by rainfall. The nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) proved to be effective under subtropical conditions, demonstrating substantial reductions of N_2O emitted from cropping soils. However, DMPP has consistently failed to reduce N_2O emissions from subtropical pasture soils. The aim of this study was therefore to investigate (a) the response of N-transformations and N_2O emissions from a subtropical pasture and a vegetable soil to DMPP, and (b) if the abundance of nosZ, the gene encoding the N_2O reductase, can explain N_2O emissions as affected by DMPP.

Soil microcosms were established in centrifuge tubes and fertilised with ammonium nitrate (35 μ g g⁻¹ soil) with or without DMPP. Labelling either ammonium (NH₄⁺), or nitrate (NO₃⁻) with ¹⁵N at 10 atom% excess enabled the quantification of gross N-transformations using ¹⁵N tracer and pool dilution methods. Soil microcosms were incubated at 75% WFPS over two days, and gas samples were taken each day. Gas samples were analysed for ¹⁵N₂O to split N₂O production into the ammonia oxidation pathway and denitrification. Soil was extracted before and after the incubation for DNA, quantifying the response of *nosZ* abundance to DMPP.

Denitrification was the main source of N_2O production in both soils. The pasture soil emitted more than 1.5 μ g N-N₂O g⁻¹ soil over two days, exceeding N₂O emissions of the vegetable soil by a factor of 10. This trend was consistent with the high N-transformation rates in the pasture soil, exceeding those of the vegetable soil by a factor >10. DMPP reduced gross nitrification by 12 and 60% for the pasture and vegetable soil, respectively. However, DMPP reduced cumulative N₂O emissions from the vegetable soil only. Fertilisation decreased *nosZ* abundance in the pasture soil, regardless of the treatment. The same trend was observed for the fertiliser only treatment from the vegetable soil. DMPP however increased *nosZ* abundance compared to the fertiliser only treatment in the vegetable soil.

Gross N transformation rates identified the pasture soil as the more productive soil regarding soil mineral N supply and demonstrate the magnitude of N_2O emissions as a function of N-turnover. The reduction of nosZ abundance after fertilisation in both soils reflects the stimulating effect of fertiliser and water addition on N turnover. Increased NO_3^- production suppresses nosZ activity, limiting further reduction of N_2O to dinitrogen (N_2). This mechanism was mitigated by DMPP in the vegetable soil, explaining the significant reduction of N_2O emissions by DMPP. The high N turnover in the pasture soil and the resulting NO_3^- concentration is likely to limit the short-term efficacy of DMPP. The relationship between N_2O emissions and nosZ abundance identifies the shift in the $N_2:N_2O$ ratio to N_2 as a key mechanism of N_2O reduction by DMPP. This shift is however driven and limited by soil-intrinsic N-turnover, explaining differences in N_2O reduction by DMPP observed for different soil types in the field.