

Measuring volcanic sulphur species from IASI.

Elisa Carboni (1), Lucy Ventress (2), David England (2), Isabelle Taylor (3), Catherine Hayer (4), Tamsin Mather (3), and Roy Grainger (1)

(1) COMET, University of Oxford, AOPP - Physic, Oxford, United Kingdom (elisa.carboni@physics.ox.ac.uk), (2) University of Oxford, AOPP - Physic, Oxford, United Kingdom, (3) COMET, University of Oxford, Earth Science, Oxford, United Kingdom, (4) Michigan Technological University, Houghton, USA

Satellite thermal infrared spectrometer (as IASI) are used to detect and retrieve different atmospheric constituent as aerosol and gases.

There is a lot of uncertainties on the amount of SO_2 emitted from the volcano, on the conversion SO_2 to H_2SO_4 and on the sulphur circle/budget in atmosphere. Volcanic eruptions are a significant source of atmospheric SO_2 and its effects and lifetime depend on the SO_2 injection altitude.

In the stratosphere, SO_2 oxidizes to form stratospheric H_2SO_4 aerosol that can affect climate for several years. The effects of SO_2 in the atmosphere and the speed of conversion into H_2SO_4 depend on the amount released and on the altitude of the plume.

Thermal infrared spectra are affected by both SO_2 and H_2SO_4 droplets and are here used to quantify both and study the conversion.

Here we exploit the high resolution nadir spectral measurements from IASI for SO_2 and H_2SO_4 retrievals and we present:

1) the results of the SO_2 retrieval (Carboni et al. 2012, Carboni et al 2016), of column amount and altitude (vertical distribution), for recent eruptions.

2) A new optimal estimation aerosol retrieval scheme for H_2SO_4 (optical depth and effective radius), together with sensitivity study and error analysis.

Measurements of SO_2 and H_2SO_4 can be particularly important to quantify climatic effect of volcanic plumes that reach stratosphere, here we show the results for recent eruptions as Calbuco 2014.