

Shock driven Instabilities and Mixing in Interfaces

Jose M. Redondo (1), Pilar Lopez (2), Otman Ben Mahjoub (4,3), Jackson Tellez (1,3)

(1) Universidad Politecnica de Catalunya (UPC-Barcelona Tech.), PELNoHT-ERCOFTAC, Dept. Fisica, Barcelona, Spain
(jose.manuel.redondo@upc.edu), (2) Pan European LIInstituto Pluri Disciplinar, Juan XXIII, 1, Dept. Mathematics, Faculty of Biology, Ciudad Universitaria, Madrid, Spain., (3) FLUMEN, UPC Campus Nord, 08034 Barcelona, Spain, (4) Universite Abelmalek Essaïdi, Larache, Morocco

Experimental and numerical results on the advance of fronts due to a shock in gravitational acceleration are shown as an unstable two layer system by dropping a box on rails to generate Richtmyer-Meshkov(RM)instability driven fronts [1,2]. The evolution of the turbulent mixing layer and its complex configuration shown For an impulsive acceleration, there are two components. The RM impulse from a shock is greatly reduced at high Mach number due to compressibility [3,4]. The analysis of Kelvin-Helmholtz, Rayleigh-Taylor (RT), Richtmyer-Meshkov and of accelerated instabilities is presented locally. Keulegan number is used at the flows using the buoyancy frequency [5,6]. Multifractal analysis is compared in both experiments. Another effect is related to the dynamical behaviour of turbulent plumes[7,9] is an interpenetration of the unstable plumes only through a fraction of the area because once the dense fluid loses its potential energy it may not mix with the lighter fluid, therefore, a lower mixing efficiency is found. Comparing different types of experiments (i.e. Shock tube fronts, overturning interfaces,[4]convective flows,[7] etc..) it is interesting to non dimensionalize the flow with a lengthscale related to the local turbulent intensity [8] such as the Ozmidov scale and the Kolmogorov length scale. The stable stratification reduces the fractal dimension of the turbulence [1]. The intermittency and the multi-fractal spectra (for different levels of the marker) is that velocity, vorticity and volume-fraction or scalar concentration exhibit different scaling laws [9, 10].Shocks happen in many physical situations and is an important issue to understand the properties of mixtures and to relate them in a dynamical parameter space [8].

[1] Redondo J.M. (1990) The Structure of Density Interfaces, PhD Thesis DAMTP, Univ. of Cambridge.

[2] Redondo, J.M., Gonzalez, P.L., Cano, J.L. and Garzon, G.A. (2015) Mixing Efficiency across RT and RM Fronts. Open Journal of Fluid Dynamics, 5, 145-150.

[3] Vindel, J. M., Yagüe, C., Redondo, J. M. (2008) Structure function analysis and intermittency in the atmospheric boundary layer. Non Linear Proc. Geophys., 15, 915-929

[4] Redondo J. M. and Linden P. F. (1988) Geometrical observations of turbulent density interfaces. in The Mathematics of Deforming Surfaces, eds. Dritschel D. G. and Perkins R. J., 221.

[5] Redondo J. M. (2002) Mixing efficiency of different kinds of turbulent processes and instabilities. in Turbulent Mixing in Geophysical Flows, 131-157.

[6] Castilla, R., Redondo, J. M. (1994) Mixing Front Growth in RT and RM Instabilities. IWPMT 5, Cambridge, U.K. 11-31.

[7] Redondo, J. M., Sanchez, M. A., Garriga, J., Castilla, R. (1995) Convective and RT Instabilities in Stratified Fluids. In Advances in Turbulence V. 428-434, Netherlands.

[8] Redondo, J. M. (1993) Fractal models of density interfaces. In: IMA Conf. Ser. 13, Elsevier, 353-370.

[9] Redondo J.M., Sanchez M.A., Castilla R. (2000) Vortical structures in stratified turbulent flows, (Eds. Redondo J.M. and Babiano A.), 113-120. FRAGMA, Madrid.