

OMI NO₂ compared with NO₂-sonde and aircraft data during DISCOVER-AQ: column comparison and assumed profile shape analysis

Miriam den Hoed, Deborah Stein Zweers, Ankie Piters, Henk Eskes, and Pieterneel Levelt
Royal Netherlands Meteorological Institute, Climate Observations Department, De Bilt, The Netherlands
(mirjam.den.hoed@knmi.nl)

Based on the NO₂-sonde dataset measured during the DISCOVER-AQ campaign from four deployments covering the period of 2011 to 2014, new analyses comparing OMI QA4ECV NO₂ columns and assumed profile shapes to aircraft, sonde, and model data have been carried out. The KNMI NO₂-sonde was used on a Millersville University tethered balloon to make semi-continuous, lower boundary layer profiles of NO₂ concentrations from the ground up to 500 m AGL. The 1-Hz sampling of both NO₂ and meteorological variables makes it possible to combine the NO₂-sonde data with aircraft measurements of NO₂ from the NCAR NO_xyO₃ instrument onboard the NASA P3-B which spiraled over the NO₂-sonde site up to 3 times per day on key measurement days. The combined sonde-aircraft profiles are compared to the DOMINO averaging kernel and a priori TM4 model profile shape. The combined sonde-aircraft data are also used to create a pseudo-column to compare with the tropospheric column amount from the DOMINO data product. The relationship of the wind direction and how it varies with NO₂ concentration versus height is also presented.