Soil CT–scan images with scaling properties

Ivan G. Torre (1,2), Juan J. Martin-Sotoca (1,3), Juan Carlos Losada (1), Pilar López (4), Ana Maria Tarquis (1,5)

(1) Grupo de Sistemas Complejos (GSC), UPM. Ciudad Universitaria, sn. Madrid 28040, Spain., (2) Departamento de
Matemática aplicada y estadística, ETSIAE, Universidad Politécnica de Madrid (UPM), Madrid, Spain., (3) Departamento de
Ciencias y TIC, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid 28670, Spain., (4) Dept. of Applied
Mathematics, Universidad Complutense de Madrid (UCM), Madrid, Spain., (5) CEIGRAM, Universidad Politécnica de
Madrid (UPM), Madrid, Spain.

Computed tomography (CT) soil images has been used more common in soil science as software-based image
analysis has more robust methods and lower costs. Pore space structure can be realistically visualized. However,
binarization of these grey images, mainly based on thresholding methods (Sezgin and Sankur, 2004), is a crucial
step in processing prior to analysis. However, in soil science context, in order to check several thresholding
methods it is necessary to create a synthetic image as a trial due to the ground truth soil image is unknown.

Depending on the type image that scientists have to study, several methods can be found in the literature to
create the ground-truth image (Zhang, 2001). Schlüter et al. (2010) and Wang et al. (2011) focused to build a
synthetic image with low porosity (4%) and not a clear binomial histogram for gray values (GV) of the image, as
those were the type of CT-scan soil images they used.

Recently, multiscale analyses have been applied to grey scale soil images and several parameters have been
extracted from them (Zhou et al., 2011). This could be reread as if 2D CT-scan soil images present a GV
multiscaling behaviour then this could be used in the strategy when synthetic images are created in order to
evaluate different thresholding algorithms (Torre et al., 2018). Based on these scaling properties, Martin-Sotoca
et al. (2017) used it to thresholding CT-scan 2D soil images and to create synthetic (or ground-truth) images. The Combining Singularity-CA method (CS-CA) was successfully applied and the synthetic images using the
Truncated Multifractal method (TMM) showed a very similar GV histogram to the real ones.

In this study we compare the scaling behaviour of 2D binary and grey synthetic soil images, created by
this method, with real soil grey images and their correspond binarized images applying CS-CA method. More
similarity found among them, not only through GV histograms, more realistic the TMM will be.

ACKNOWLEDGEMENTS
First author acknowledge the fellowship received by Fundacion ONCE. This research was funded in part by
MICINN through project no. PCIN-2014-080, project no. MTM2015-63914-P

REFERENCES
bining global and local scaling methods to detect soil pore space. Journal of Geochemical Exploration,
https://doi.org/10.1016/j.gexplo.2017.06.017
-Torre, Iván G., JuanC.LosadaandA.M.Tarquis. 2016. Multiscaling properties of soil images. Biosystems Engi-