Geophysical Research Abstracts Vol. 20, EGU2018-19468, 2018 EGU General Assembly 2018 © Author(s) 2018. CC Attribution 4.0 license.

Development of an instrument for airborne \mathbf{RO}_2 measurements in the troposphere

Manas Dash and Hartwig Harder

Max Planck Institute for Chemistry, Mainz, Germany (Manas.Dash@mpic.de)

Peroxy radicals (RO_2), produced by the reaction of OH radicals with volatile organic compounds. (VOCs), are important in the respect of recycling OH and terminating the radical chain by formation of organic peroxides. RO_2 also play a vital role in the photochemical production of tropospheric ozone. The importance of RO_2 radicals in atmospheric chemistry motivated us to develop an instrument to measure RO_2 throughout the vertical profile of the troposphere with broad range of pressure and temperature conditions. We based the RO_2 detection on the conversion of RO_2 with NO and CO to HO_2 and subsequently to OH, which is detected by Laser Induced Fluorescence (LIF). We present model calculations showing the most suitable parameters to detect most reliable RO_2 for ground and aircraft based platforms. Results from laboratory experiments to demonstrate the performance of the RO_2 instrument will be presented.