

## Effect of biochar origin and soil pH on greenhouse gas emissions from sandy and clay soils

Di Wu (1), Mehmet Senbayram (2,3), Huadong Zang (4), Ferhat Ugurlar (2), Salih Aydemir (2), Nicolas Brüggemann (1), Yakov Kuzyakov (4), Roland Bol (1), Rui Rui Chen (5), and Evgenia Blagodatskaya (4)

(1) Institute of Bio- and Geosciences, Agrosphere (IBG-3), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany, (2) Institute of Plant Nutrition and Soil Science, University of Harran, Osmanbey, 63000, Sanliurfa, Turkey, (3) Thünen Institute of Climate-Smart Agriculture, Federal Research Institute for Rural Areas, Forestry and Fisheries, Bundesallee 65, 38116 Braunschweig, Germany, (4) Department of Agricultural Soil Science, Büsgen-Institute, University of Göttingen, 37007 Göttingen, Germany., (5) Chinese Acad Sci, Inst Soil Sci, State Key Lab Soil & Sustainable Agr, Nanjing 210008, Jiangsu, Peoples R China

Biochar addition is a potential option for reducing GHGs emissions through carbon (C) sequestration and N<sub>2</sub>O mitigation. However, the influences of biochar on C and nitrogen (N) transformations in soil are still unclear, resulting in a poor understanding of the mechanisms of N<sub>2</sub>O mitigation effects of biochar. Here we carried out several soil incubation experiments to investigate the influence of two common biochars addition (corn cob and olive pulp) with ammonium sulfate on CO<sub>2</sub> and N<sub>2</sub>O emissions from two contrasting soil types (acidic sandy and alkaline clay soil). Four extracellular enzymes activities that related to C and N cycling, i.e. cellobiohydrolase, chitinase, xylanase and  $\beta$ -glucosidase, were analyzed to gain insights into the underlying mechanisms of biochar's effects on CO<sub>2</sub> and N<sub>2</sub>O evolutions. Furthermore, Illumina MiSeq sequencing were used to investigate the effects of different biochar addition on microorganism communities. Contrasting effects of two biochars on CO<sub>2</sub> and N<sub>2</sub>O emissions were observed in the two different soils. The corn biochar addition had no significant effect on CO<sub>2</sub> and N<sub>2</sub>O emissions in the alkaline clay soil, but significantly decreased CO<sub>2</sub> emissions by 11.8% and N<sub>2</sub>O emissions by 26.9% in the acidic sandy soil compared to N-fertilizer only treatment. In contrast, olive biochar addition showed no significant effect on CO<sub>2</sub> emissions but decreased N<sub>2</sub>O emissions by 34.3% in the alkaline clay soil, while in the acidic sandy soil addition of olive biochar triggered about a twofold higher maximum CO<sub>2</sub> emission rate and decreased N<sub>2</sub>O emissions by 68.4%. Up to 50-130% higher specific CO<sub>2</sub> emissions (per unit of C-related enzyme activity: cellobiohydrolase, chitinases and  $\beta$ -glucosidase) were observed after addition of olive biochar compared to corn biochar addition in the acidic sandy soil. Specific microbial species showed clear responses to the amendments of mineral N and biochars. In the acidic sandy soil, the amendment of olive biochar resulted in a significant decrease in the proportional abundance of Acidobacteria, accompanied by a significant increase in soil pH. We concluded that biochar's effects on N<sub>2</sub>O and CO<sub>2</sub> emissions are more pronounced in acidic soils and the higher CO<sub>2</sub> emissions induced by olive mill biochar in sandy soil were attributed to its liming effect.