Geophysical Research Abstracts Vol. 20, EGU2018-2774, 2018 EGU General Assembly 2018 © Author(s) 2018. CC Attribution 4.0 license.

CONTENT: Improved estimates of open ocean CO_2 parameters from T, S and O_2 data for underway and profile applications

Henry C. Bittig (1), Tobias Steinhoff (2), Hervé Claustre (1), Björn Fiedler (2), Nancy L. Williams (3), Arne Körtzinger (2,4), Jean-Pierre Gattuso (1,5)

(1) Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR 7093, Laboratoire d'Océanographie de Villefranche-sur-Mer (LOV), France, (2) GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Germany, (3) Oregon State University, Corvallis, Oregon, USA, (4) Christian-Albrechts-Universität zu Kiel, Germany, (5) Institute for Sustainable Development and International Relations, Sciences Po, Paris, France

CONTENT (CONsisTency EstimatioN and amounT) is a method, which combines parameterizations of four carbonate system parameters (dissolved inorganic carbon, total alkalinity, pH and pCO₂, obtained from the CANYON neural network parameterization, Sauzède et al., 2017). CONTENT uses the overdetermined system to improve accuracy for each individual parameter, and to provide a local uncertainty estimate based on the consistency of these calculations. Together with the spatio-temporal density of the parameterization's reference data, the consistency allows users to verify the local validity of estimates and thus reliable interpretation. CONTENT provides a more accurate estimate for all four parameters, especially for pCO₂ with a global accuracy estimated for CANYON at 7.6 % (30 μ atm at 400 μ atm) and up to 3.3 % (13 μ atm at 400 μ atm) for CONTENT. The performance and usefulness of CONTENT are evaluated against various types of datasets, including underway pCO₂ observations from cruises across the Atlantic, pCO₂ profile data acquired by a profiling float in the Equatorial Atlantic, and surface pCO_2 estimated from profiling float pH data in the Southern Ocean. The results are highly encouraging and promise to offer new ways to address spatial and temporal variability (in particular short-term) using existing autonomous observation networks. Furthermore, at the global scale, CONTENT surface pCO₂ estimates from CTD-O₂ and Argo-O₂ profile data are unbiased compared to a Surface Ocean CO₂ Atlas-based climatology. The synergetic link of observation systems like Argo-O₂ together with CONTENT for the water column structure and voluntary observing ship data collected in SOCAT for accurate surface pCO₂ will improve ocean CO₂ inventory and flux estimates. Finally and based on the complete CO₂ system description provided by CONTENT, the temporal trend and distribution of the Revelle buffer factor is analyzed solely based on CTD-O2 and Argo-O2 observations and the GLODAPv2 dataset. We find a global increase of $+0.26 \pm 0.28$ (1σ) units per decade and an increase in time about 50 % higher and significant at latitudes above 45° N and S. This application illustrates the potential and utility that such transfer functions with realistic uncertainty estimates provide to ocean biogeochemistry and global climate change research.