Impact of Linewidth Narrowing on Climate Sensitivity

William van Wijngaarden (1) and Will Happer (2)

(1) Physics Dept., York University, Toronto, Canada (wlaser@yorku.ca), (2) Physics Dept., Princeton, Princeton, USA (happer@Princeton.EDU)

Increasing greenhouse gas concentrations strongly affect the far-wing lineshape of molecular transitions. In particular, the finite time of molecular collisions as well as Dicke narrowing significantly reduce the absorption cross section in the far-wing region. It is known that this is essential to take into account when fitting atmospheric observations of the infrared radiance[1]. Using incorrect line profiles results in an overestimate of radiative forcing by several tens of per cent. This work performed a line by line computation using data downloaded from the Hitran database. For each line, a Voigt profile was modified to correct the far-wing lineshape. Over 100,000 lines originating from the various CO₂ isotopomers and other greenhouse gases CH₄, N₂O and H₂O were considered. The computations developed fast numerical routines to solve the Schwarzschild equation. The calculations of the climate sensitivity were done for the standard temperature profiles for the atmosphere[2] and also take into account the observed altitudinal dependence of the greenhouse gas concentrations[3].