Indirect determination of soil-specific conversion factor for soil microbial phosphorus

Nataliya Bilyera
National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine (nbilyera@yahoo.com)

Phosphorus (P) is an essential nutrient for plant growth. Low P availability in soils requires high demand for P as fertilizer and boosts searching for alternative P sources. Soil microbial phosphorus (P\text{\textsubscript{mic}}) comprising up to 25\% of total P is considered as a significant P stock. However, global storage and local importance of P\text{\textsubscript{mic}} has not been estimated yet due to the absence of sufficient and reliable data. This is mainly because of the absence of standard method like those for microbial C and N. Another challenge is the necessity to determine soil-specific correction factor (Kp) for incomplete P release from cells, as application of the literature value (0.4) or no correction leads either to under- or overestimation of P\text{\textsubscript{mic}} and related pools and fluxes.

Aiming to improve P\text{\textsubscript{mic}} accuracy without direct Kp determination by 33P or 32P labeling, we conducted correlation analysis between soil specific Kp values available in the literature and soil parameters followed by forward stepwise regression analysis.

The soil-specific Kp values collected from literature have strong dependence (R^2=0.45-0.76) on soil properties, whose relevance decreases in the order P_{tot} > C_{org} > pH > Clay content.

The negative linear regression (p<0.05 R^2=0.76) reflects the decrease of extracted P\text{\textsubscript{mic}} with the P_{tot} increase. An exponential increase of Kp with decreasing organic C (R^2=0.60) revealed a threshold of 10 g C_{org} kg$^{-1}$,below that the determination of soil-specific Kp values is very important. The Kp dependence on pH describes best (R^2 =0.60) by a quadratic function, with a minimum at pH 6.9. Combining three soil parameters (P_{tot}, C_{org} and Clay) in multiple regression: $Kp = 0.76 - 0.007*C_{\text{org}} - 0.56*P_{\text{tot}} + 0.004*Clay$ enables to get an excellent prediction (R^2 = 0.99).

The improvement of Kp will help to get more precise data in the new studies as well as re-calculate the old ones. Therefore, in the absence of a soil-specific Kp, we recommend using the regression models obtained in a forward stepwise analysis and suggested in our study. They will strongly refine the microbial biomass P calculation and consequently improve quantification of the microbial P transformation processes: P immobilization, net P mineralization and P\text{\textsubscript{mic}} turnover rates.

Keywords: forward stepwise analysis, microbial phosphorus, Kp, organic carbon, total phosphorus.