Geophysical Research Abstracts Vol. 20, EGU2018-295, 2018 EGU General Assembly 2018 © Author(s) 2017. CC Attribution 4.0 license. ## Indirect determination of soil-specific conversion factor for soil microbial phosphorus Nataliya Bilyera National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine (nbilyera@yahoo.com) Phosphorus (P) is an essential nutrient for plant growth. Low P availability in soils requires high demand for P as fertilizer and boosts searching for alternative P sources. Soil microbial phosphorus (P_{mic}) comprising up to 25% of total P is considered as a significant P stock. However, global storage and local importance of P_{mic} has not been estimated yet due to the absence of sufficient and reliable data. This is mainly because of the absence of standard method like those for microbial C and N. Another challenge is the necessity to determine soil-specific correction factor (Kp) for incomplete P release from cells, as application of the literature value (0.4) or no correction leads either to under- or overestimation of P_{mic} and related pools and fluxes. Aiming to improve P_{mic} accuracy without direct Kp determination by ^{33}P or ^{32}P labeling, we conducted correlation analysis between soil specific Kp values available in the literature and soil parameters followed by forward stepwise regression analysis. The soil-specific Kp values collected from literature have strong dependence (R^2 =0.45-0.76) on soil properties, whose relevance decreases in the order $P_{tot} > C_{org} > pH > Clay$ content. The negative linear regression (p<0.05 R²=0.76) reflects the decrease of extracted P_{mic} with the P_{tot} increase. An exponential increase of Kp with decreasing organic C (R²=0.60) revealed a threshold of 10 g C_{org} kg⁻¹, below that the determination of soil-specific Kp values is very important. The Kp dependence on pH describes best (R²=0.60) by a quadratic function, with a minimum at pH 6.9. Combining three soil parameters (P_{tot} , C_{org} and Clay) in multiple regression: Kp = 0.76 - 0.007* C_{org} - 0.56* P_{tot} + 0.004*Clay enables to get an excellent prediction (R² = 0.99). The improvement of Kp will help to get more precise data in the new studies as well as re-calculate the old ones. Therefore, in the absence of a soil-specific Kp, we recommend using the regression models obtained in a forward stepwise analysis and suggested in our study. They will strongly refine the microbial biomass P calculation and consequently improve quantification of the microbial P transformation processes: P immobilization, net P mineralization and P_{mic} turnover rates. Keywords: forward stepwise analysis, microbial phosphorus, Kp, organic carbon, total phosphorus.