

Ship-based NO_x measurements in the Marine Boundary Layer of the Arabian Peninsula

Ivan Tadić, Uwe Parchatka, and Horst Fischer Max Planck Institute for Chemistry, Atmospheric Chemistry Department, Mainz, Germany

The ship-based AQABA (Air Quality and Climate in the Arabian **Ba**sin) campaign deployed on the 'Kommandor Iona' Research and Survey Vessel provided for the first time more than 60 days of continuous trace gas observations in a broad spectrum of meteorological and climatic influences in the Marine Boundary Layer (MBL) of the Arabian Peninsula. Here a two-channel chemiluminescence instrument for the detection of NO_x (= NO + NO₂) was deployed, with the NO₂-channel equipped with a photolysis chamber to selectively convert NO₂ to NO.

In the recent past there have been studies indicating that ongoing (photo-)chemistry in remote regions with low NO_x is poorly understood [1][2]. NO_x acting as an O_3 precursor and as an indicator for fossil and biomass burning also influences the abundances of trace gases such as CO, CH_4 and HO_x (= OH + HO₂). It can vary from several hundreds of ppb_v close to frequented traffic roads down to several ppt_v in the MBL, at higher altitudes and in Antarctica [2]. Low NO_x -regions are generally accepted to be called those regions possessing NO_x mixing ratios below 1 ppb_v. It is the MBL that covers the predominant part of the earth's surface and exhibits ideal conditions to study baseline (photo-)chemical processes [1]. It is considered an important region in terms of chemical O_3 loss [1] whereas the Arabian Peninsula is a dry and warm region influenced by Saharan dust and suffering from the petro-chemistry of the Arabian Gulf and incident solar radiation.

We will present NO_x data with exemplified timelines of the unique regions of the cruise, in particular of the second part of the campaign whose measurements were less affected by contamination of the ship exhaust itself. To study the influence of petrochemical industry on the trace gas composition of the MBL, NO_x in the Arabian Gulf can be investigated with detected mixing ratios often exceeding the 1 ppb_v-level during daytime. The Indian Ocean was predestinated to study the photochemical production of NO through photolysis of NO_2 during daytime. Here multiple, diurnal NO profiles could be measured with NO peak mixing ratios below 50 ppt_v during midday and the most stable baseline NO mixing ratios during nighttime with NO practically not being present. Due to higher ship traffic, the entrance into the Red Sea and the Suez Canal are suitable to gain an assessment on the chemical composition of ship plumes.

References:

[1] Z. Hosaynali Beygi et al., Oxidation photochemistry in the Southern Atlantic boundary layer: unexpected deviatons of photochemical steady state, Atmos. Chem. Phys., 11, 8497-8513 (2011)

[2] C. Reed et al., Interferences in photolytic NO₂measurements: explanation for an apparent missing oxidant?, Atmos. Chem. Phys., 16, 4707-4724 (2016)