Geophysical Research Abstracts Vol. 20, EGU2018-3283, 2018 EGU General Assembly 2018 © Author(s) 2018. CC Attribution 4.0 license.

Vertical land motion trends from GNSS and altimetry at tide gauge stations

Marcel Kleinherenbrink, Riccardo Riva, and Thomas Frederikse

Geoscience and Remote Sensing, Delft University of Technology, The Netherlands (m.kleinherenbrink@tudelft.nl)

This study compares eight weighting techniques for Global Navigation Satellite System (GNSS)-derived Vertical Land Motion (VLM) trends at 570 tide gauge (TG) stations. The spread between the methods has a comparable size as the formal uncertainties of the GNSS trends. Taking the median of the surrounding GNSS trends shows the best agreement with differenced altimetry - tide gauge (ALT-TG) trends. An attempt is also made to improve VLM trends from ALT-TG time series. Only using highly correlated along-track altimetry and TG time series, reduces the standard deviation of ALT-TG time series up to 10%. As a result, there are spatially coherent changes in the trends, but the reduction in the RMS of differences between ALT-TG and GNSS trends is insignificant. However, setting correlation thresholds also acts like a filter to remove problematic TG stations. This results in sets of ALT-TG VLM trends at 344-663 TG locations, depending on the correlation threshold. Compared to other studies, we decrease the RMS of differences between GNSS and ALT-TG trends (from 1.47 to 1.22 mm/yr), while we increase the number of locations (from 109 to 155), Depending on the weighting methods the mean of differences between ALT-TG and GNSS trends varies between 0.1-0.2 mm/yr. We reduce the mean of differences by taking into account the effect of elastic deformation due to present-day mass redistribution into account.