

Millennial to million year normal-fault interactions in the forearc of a subduction margin, Crete, Greece

Violeta Veliz (1), Vasiliki Mouslopoulou (1), Andrew Nicol (2), Charalambos Fassoulas (3), John Begg (4), and Onno Onken (1)

(1) GFZ Helmholtz-Zentrum Potsdam, Section 4.1 - Lithosphere Dynamics, Potsdam, Germany (vasso@gfz-potsdam.de), (2) Department of Geological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand, (3) Natural History Museum of Crete, University of Crete, 71409, Greece, (4) GNS Science, Lower Hutt, PO Box 60-368, New Zealand

Faults located close to one another (e.g., <5 km) are likely to interact. We explore the impact of fault interactions on the thousand to million year growth patterns of the Eastern Mirabello Fault System (EMFS), an active NE-SW trending normal fault system in the upper-plate of the Hellenic subduction margin. Kinematic analysis of fault-displacement data shows that, over the last 2 ± 0.5 Ma and along the entire fault-system length, the EMFS accommodated displacement at near constant rates (0.5 ± 0.15 mm/a), with large faults in the system moving faster than small faults. This hierarchy does not however persist over shorter timescales ($<16.5 \pm 0.5$ ka), with faults/fault-segments accommodating slip episodically, with displacement rates of up to 5 times faster than their million-year values, or not moving at all. Despite this apparent short-term variability in displacement accumulation on individual faults (of fault segments), temporally stable rates are achieved post ~ 16.5 ka when the entire fault system is considered. Thus, increased stability of displacement accumulation on individual faults over million-year timescales is also partly matched by increasing the spatial length scales of observation on shorter timescales ($<\sim 16.5$ ka), suggesting that each fault is a component of a kinematically coherent system in which all faults interact to accommodate displacement interdependently, a feature that may lead to clustered (or synchronous) rupture on multiple faults in the system.