

A hydroxyl radical detection system based on free jet expansion and laser-induced fluorescence techniques

Hao Chen (1), Renzhi Hu (1), Pinhua Xie (1,2,3), Liuyi Ling (1,4), Fengyang Wang (1), Yihui Wang (1), Jianguo Liu (1,3), Wenqing Liu (1,3)

(1) Key Lab. of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China (hchen@aiofm.ac.cn), (2) School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, China, (3) CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361000, China, (4) Institute of Electric and Information Technology, Anhui University of Science and Technology, Huainan 232001, China

Hydroxyl (OH) radical is the most potential oxidant agent in the atmosphere. An OH radical measurement instrument based on laser induced fluorescence (LIF) has been developed in our laboratory. Gas sampling is based on supersonic free jet expansion and ambient air is introduced into a low-pressure fluorescence cell through a pinhole aperture, then the OH radical is irradiated by a tunable dye laser at a high repetition rate of 8.5 kHz. Considering the extremely weak irradiation and short lifetime of the fluorescence, time resolved technique was used for its measurement. A self-designed gated photomultiplier (PMT) is used, and gating is actualized by switching the voltage applied on the first, third and fifth dynodes of the PMT, with a rising time of 20 ns and the on/off gain (extinction) ratio better than 10^5 . Then the weak signal is accumulated by a photon counter in a specific timing after laser ends. The calibration of the LIF system is researched in a quartz flow tube and certain concentration of OH radical is produced by simultaneous photolysis of H_2O and O_2 . The minimum detection limit of the instrument using gated PMT is determined to be 9.4×10^5 molecules/cm³, and the sensitivity is 9.5×10^{-7} cps/(OH·cm⁻³)(S/N=2, integration time=60s). And a micro channel photomultiplier (MCP) is also prepared for fluorescence detection, while OH detection limit and the detection sensitivity using MCP is 1.6×10^5 molecules/cm³ and 2.3×10^{-6} cps/(OH·cm⁻³), respectively. Some field measurement of atmospheric OH radical has been carried out, and the diurnal variation of OH radical concentration is obtained.