

A fast cloud retrieval algorithm from the oxygen B band for GOME-2 and TROPOMI measurements

Marine Desmons, Ping Wang, Maarten Sneep, and Piet Stammes
KNMI, Netherlands (desmons@knmi.nl)

Based on the Fast Retrieval Scheme for Clouds from the Oxygen A band (FRESCO) algorithm, a new algorithm using the oxygen B band (centered at 688 nm) has been developed for GOME-2 cloud retrievals. The Oxygen B band algorithm retrieves effective cloud fraction and cloud pressure, assuming a cloud albedo of 0.8. For vegetation covered surface, surface albedo at the O₂ B band is lower than the surface albedo at the O₂ A band (760 nm). The retrievals using the O₂ B band may be more accurate than using the O₂ A band due to low surface albedo. Similar to FRESCO, the O₂ B band line parameters are taken from HITRAN 2012. The surface albedo values are taken from O₃M SAF surface albedo climatology. We have tested the O₂ B band algorithm using the GOME-2 spectral reflectances. The retrieved O₂ B band effective cloud fraction and cloud pressure have been compared with the O₂ A band retrievals for different surface types, such as ocean, forests, deserts.

In this presentation we will give a short description of the FRESCO O₂ B band algorithm, show the the effective cloud fraction and cloud pressure retrieved from GOME-2 O₂ B band, and interpret the difference between the cloud products from the O₂ A and B bands.