

## Ozone formation induced by the impact of reactive bromine and iodine species on photochemistry in a polluted marine environment

Moshe Shechner and Eran Tas

The Hebrew University, Soil & Water, Rehovot, Israel (eran.tas@mail.huji.ac.il)

Reactive iodine and bromine species (RIS and RBS, respectively) are known for altering atmospheric chemistry, causing sharp tropospheric ozone ( $O_3$ ) depletion in polar regions and significant  $O_3$  reduction in the marine boundary layer (MBL). Here we use the comprehensive heterogeneous CAABA/MECCA atmospheric chemistry box model (CAABA/MECCA) to simulate the interaction between photochemistry and RBS and RIS, based on previous measurements at the Dead Sea (between  $N31^{\circ}50'$  and  $N31^{\circ}00'$ ,  $E35^{\circ}30'$ ) boundary layer. Unexpectedly, the model simulations showed that both RIS and RBS can lead to enhanced  $O_3$  formation in a polluted marine environment under volatile organic compound (VOC)-limited conditions associated with high nitrogen oxide ( $NO_X = [NO] + [NO_2]$ ) concentrations<sup>1</sup>. Under these conditions, the daily average  $O_3$  mixing ratio increased up to  $\sim 44\%$  and  $\sim 28\%$  for BrO and IO mixing ratios of up to  $\sim 6.8$  ppt and  $\sim 4.7$  ppt, respectively. The increase in  $O_3$  was partially induced by enhanced  $CINO_3$  formation for higher  $Br_2$  and  $I_2$  emission flux. The  $O_3$  increase was associated with an increased mixing ratio of hydroperoxy radical to hydroxyl radical ( $[HO_2]/[OH]$ ) and increased  $[NO_2]/[NO]$  with higher RBS and/or RIS.  $NO_X$ -rich conditions are typical to the polluted MBL, near coastlines and ship plumes. Considering that  $O_3$  is toxic to humans, plants and animals and is a greenhouse gas, and that the polluted MBL covers extensive inhabited areas of the earth's surface, our findings call for adequate updating of local and regional air-quality models with the effects of RBS and RIS activities on  $O_3$  mixing ratios in the polluted MBL.

### References

<sup>1</sup> Shechner, M., and Tas, E., Ozone Formation Induced by the Impact of Reactive Bromine and Iodine Species on Photochemistry in a Polluted Marine Environment *Environmental Science & Technology* 2017 51 (24), 14030-14037, DOI: 10.1021/acs.est.7b02860.