First real-time isotopic characterization of N$_2$O from chemodenitrification

Jing Wei (1,2), Erkan Ibraim (2), Nicolas Brüggemann (1), Harry Vereecken (1), and Joachim Mohn (2)

(1) Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences, Agrosphere (IBG-3), Wilhelm-Johnen-Straße, 52425 Jülich, Germany. (2) Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Air Pollution & Environmental Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland

Chemodenitrification is the main abiotic nitrous oxide (N$_2$O) source in soils, its N$_2$O isotopic signatures could be applied for source attribution, but are currently not known in sufficient detail. To overcome this limitation, the intramolecular isotopic composition of N$_2$O, 14N14N16O, 15N14N16O (15N$^\alpha$-N$_2$O), 14N15N16O (15N$^\beta$-N$_2$O), and 14N14N18O, produced by the reaction of sodium nitrite with lignin, five lignin derivatives, and three types of soils, was analyzed online with a quantum cascade laser absorption spectrometer (QCLAS). Thereby, we present the first continuous dataset of δ^{15}N$_{bulk}$ (δ^{15}N$_{bulk} \equiv (\delta^{15}N^\alpha + \delta^{15}N^\beta)/2$), δ^{18}O, and SP (site preference, SP $\equiv \delta^{15}$N$^\alpha - \delta^{15}$N$^\beta$) of N$_2$O from chemodenitrification in both aqueous solutions and soils. Contrary to the previous assumption that SP values are constant for distinct abiotic N$_2$O source processes, our results reveal a considerable shift along time in SP from 5.6 to 29.0 % in the reactions of sodium nitrite with organic substances. The large SP variability of N$_2$O might be explained by the multiple reaction pathways involved. These findings provide important new information for N$_2$O source partitioning using intramolecular N$_2$O isotopic signatures, e.g. end-member maps of SP vs. δ^{15}N$_{bulk}$ and δ^{18}O.