Geophysical Research Abstracts Vol. 20, EGU2018-5192-2, 2018 EGU General Assembly 2018 © Author(s) 2018. CC Attribution 4.0 license.

First real-time isotopic characterization of N₂O from chemodenitrification

Jing Wei (1,2), Erkan Ibraim (2), Nicolas Brüggemann (1), Harry Vereecken (1), and Joachim Mohn (2) (1) Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences, Agrosphere (IBG-3), Wilhelm-Johnen-Straße, 52425 Jülich, Germany, (2) Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Air Pollution & Environmental Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland

Chemodenitrification is the main abiotic nitrous oxide (N_2O) source in soils, its N_2O isotopic signatures could be applied for source attribution, but are currently not known in sufficient detail. To overcome this limitation, the intramolecular isotopic composition of N_2O : $^{14}N^{14}N^{16}O$, $^{15}N^{14}N^{16}O$ ($^{15}N^{\beta}-N_2O$), $^{14}N^{15}N^{16}O$ ($^{15}N^{\alpha}-N_2O$), and $^{14}N^{14}N^{18}O$, produced by the reaction of sodium nitrite with lignin, five lignin derivatives, and three types of soils, was analyzed online with a quantum cascade laser absorption spectrometer (QCLAS). Thereby, we present the first continuous dataset of $\delta^{15}N^{bulk}$ ($\delta^{15}N^{bulk}$ $\equiv (\delta^{15}N^{\alpha}+\delta^{15}N^{\beta})/2$), $\delta^{18}O$, and SP (site preference, SP $\equiv \delta^{15}N^{\alpha}-\delta^{15}N^{\beta}$) of N_2O from chemodenitrification in both aqueous solutions and soils. Contrary to the previous assumption that SP values are constant for distinct abiotic N_2O source processes, our results reveal a considerable shift along time in SP from 5.6 to 29.0 % in the reactions of sodium nitrite with organic substances. The large SP variability of N_2O might be explained by the multiple reaction pathways involved. These findings provide important new information for N_2O source partitioning using intramolecular N_2O isotopic signatures, e.g. end-member maps of SP vs. $\delta^{15}N^{bulk}$ and $\delta^{18}O$.