Geophysical Research Abstracts Vol. 20, EGU2018-5363, 2018 EGU General Assembly 2018 © Author(s) 2018. CC Attribution 4.0 license.

Two phenomenological constants explain similarity laws in stably stratified turbulence

Gabriel Katul (1) and Dan Li (2)

(1) Duke University, Nicholas School of the Environment, Durham, United States (gaby@duke.edu), (2) Department of Earth and Environment, Boston University, Boston, Massachusetts, USA

In stably stratified turbulent flows, the mixing efficiency associated with eddy diffusivity for heat, or equivalently the turbulent Prandtl number (Pr_t) , is fraught with complex dynamics originating from the scale-wise interplay between shear generation of turbulence and its dissipation by density gradients. A large corpus of data and numerical simulations agree on a near-universal relation between Pr_t and the Richardson number (R_i) , which encodes the relative importance of buoyancy dissipation to mechanical production of turbulent kinetic energy. The $Pr_t - R_i$ relation is shown to be derivable solely from the co-spectral budgets for momentum and heat fluxes if a scale-wise Rotta-like return to isotropy closure for the pressure-strain effects and Kolmogorov's theory for turbulent cascade are invoked. The ratio of the Kolmogorov to the Kolmogorov-Obukhov-Corrsin phenomenological constants, and a constant associated with isotropization of the production whose value has been predicted from Rapid Distortion Theory (= 3/5), explain all the macroscopic non-linearities. Comparisons with a conventional Mellor-Yamada (MY) model for stably stratified atmospheric flows as well as the Energy- and Flux-Budget (EFB) approach is featured with a lens on the cut-off Richardson number dilemma.