

A direct and simultaneous method for detecting atmospheric Ar, O_2 , and N_2 by a gas chromatograph equipped with a thermal conductivity detector (GC-TCD)

Gen Zhang (1) and Shuangxi Fang (2)

(1) Chinese Academy of Meteorological Sciences, Beijing, China (zhanggen@cma.gov.cn), (2) China Meteorological Administration (CMA), Beijing, China (fangsx@cma.gov.cn)

Carbon dioxide (CO₂) and oxygen (O₂) fluxes are inversely linked through the processes of fossil fuel combustion, terrestrial photosynthesis, and respiration, while with no correlation during air-sea exchange. This behavior of CO₂ and O₂ fluxes provides an insight into distinguishing the terrestrial and oceanic sinks for anthropogenic CO₂ by measuring atmospheric O₂ and concurrent CO₂ concentrations. In addition, atmospheric Ar/N₂ ratio is expected to undergo very slight variations due to exchanges of Ar and N₂ across the air–sea interface, driven by ocean solubility changes and thus observing such minute variations may provide useful constraints on large-scale fluxes of heat across the air–sea interface. In our study, we described a direct and simultaneous method for detecting atmospheric Ar, O₂, and N₂ by a gas chromatograph equipped with a thermal conductivity detector (GC-TCD) with the aid of a HP-PLOT molecule sieve capillary column and semiconductor cryogenic technology. Preliminary results showed this method could provide a good separation between Ar and O₂ in the atmosphere, but a litter difficulty to measuring such minute changes in the atmospheric Ar/N₂ ratios.