

## Understanding NO<sub>2</sub> and O<sub>3</sub> changes in tropical mid-stratosphere by means of a chemistry-transport model

Evgenia Galytska (1,2), Martyn P. Chipperfield (3), Alexey Rozanov (1), Sandip Dhomse (3), and John P. Burrows (1)

(1) Institute of Environmental Physics, University of Bremen, Bremen, Germany, (2) Department of Meteorology and Climatology, Taras Schevchenko National University of Kyiv, Kyiv, Ukraine, (3) NCAS, School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK

The decline in the atmospheric abundance of halogenated Ozone Depleting Substances (ODS) is a successful outcome of the Montreal Protocol (and amendments) and is expected to result in a global ozone (O<sub>3</sub>) recovery. Nevertheless, there are other factors that affect the abundance of O<sub>3</sub> in the atmosphere, such as non-halogen chemical species, changing climate with its natural forcings, volcanic activities, solar effects etc. Hence, stratospheric O<sub>3</sub> is expected to demonstrate dynamical and chemical variability over many timescales, which needs to be understood in order to have confidence in recovery from ODSs.

An unexpected negative change in O<sub>3</sub> has been observed in the tropical stratosphere at altitudes around 30-35 km within the period 2004-2012. An analysis of trends from the SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY (SCIAMACHY) showed a decrease in O<sub>3</sub> concentrations, which is associated with an increase in NO<sub>2</sub> concentrations. This coupling between stratospheric O<sub>3</sub> and NO<sub>2</sub> is well recognized, with the latter being the major ozone-depleting substance in the altitude range 25-40 km. However, the driver for the observed change in NO<sub>2</sub> is not yet clearly identified.

To analyze possible and plausible causes of the observed changes in O<sub>3</sub> and NO<sub>2</sub> we use TOMCAT/SLIMCAT Chemistry-Transport Model (CTM) with different chemical and dynamical forcings to quantify their impacts. The model is driven by European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-Interim reanalyses to specify the atmospheric transport and temperatures and calculates the abundances of stratospheric species using a detailed chemical scheme.

The model generally does well in capturing features of the observed variability in tropical NO<sub>2</sub> and O<sub>3</sub>. Our simulations show that the +7%/decade trend in NO<sub>2</sub> is due to a similar positive trend in reactive odd nitrogen (NO<sub>y</sub>), which is associated with a decrease (5 %/decade) in N<sub>2</sub>O.

In this presentation, we discuss the impact of both dynamical features (via age-of-air simulations) and chemical processes that could lead to the change in the tropical mid-stratospheric N<sub>2</sub>O from model simulations, which in turn, indirectly impacts O<sub>3</sub>.