

Elemental and organic carbon and water-soluble ions determined in atmospheric particles collected at industrial and vehicular sites.

Perola Vasconcellos (1), Sofia Caumo (1), Ana Vicente (2), Danilo Custódio (1), and Célia Alves (2)

(1) University of São Paulo, Fundamental Chemistry Department, São Paulo, Brazil (perola@iq.usp.br), (2) CESAM, University of Aveiro, Aveiro, Portugal (celia.alves@ua.pt)

Atmospheric particulate matter presents an important contribution in the regional and global air quality and in the human health. Metropolitan area of São Paulo (MASP) has a lot of number of inhabitants, vehicles and industries. Total suspended particles (TSP) were collected during the winter 2016 with a high volume sampler simultaneously at two site: the first one, 500 meters far from an industrial complex located at MASP; the second one, 8 kilometers from the first site, and it was close to an important avenue in MASP. The particulate matter concentration ranged from 17 to 53 $\mu\text{g m}^{-3}$ for industrial site and between 28 and 99 $\mu\text{g m}^{-3}$ for the second site, where there is a large contribution of vehicles, buses and trucks (vehicular site). The organic carbon (OC) and elemental carbon (EC) were determined by thermo-optical analyses developed at the University of Aveiro (Castro et al. 1999). OC average concentration were 6 $\mu\text{g m}^{-3}$ and 9 $\mu\text{g m}^{-3}$ for industrial and vehicular sites respectively, and EC mean concentration was over 3 $\mu\text{g m}^{-3}$ for the both sites. OC/EC mean ratios were 2 for industrial site and 4 for vehicular site, indicated that the latter site received more contribution of secondary aerosols. Between the ions determined in this study by ion chromatography, Na^+ (102 $\mu\text{g m}^{-3}$) and Ca^{2+} (102 $\mu\text{g m}^{-3}$) presented a significant contribution between the cations for the samples collected at industrial complex as well as SO_4^{2-} (378 $\mu\text{g m}^{-3}$) and NO_3^- (223 $\mu\text{g m}^{-3}$) for the anions. Sodium and calcium are associated with soil resuspension and the higher concentration of sulfate and nitrate may indicate a large influence of vehicle emission (Pereira et al. 2017). In the urban site, calcium (130 $\mu\text{g m}^{-3}$) and ammonium (84 $\mu\text{g m}^{-3}$) were the most abundant cations and sulfate (428 $\mu\text{g m}^{-3}$) and nitrate (237 $\mu\text{g m}^{-3}$), the anions. The industrial site was affected predominantly by primary sources, while the vehicular site received the influence of the both primary and secondary sources.

References:

Castro, et al. (1999) *Atmos Environ* 33:2771–2781 . doi: 10.1016/S1352-2310(98)00331-8

Pereira et al. (2017) *Air Qual Atmos Heal* 10:457–468 . doi: 10.1007/s11869-016-0437-9

Pio et al., (2011) *Atmos Environ* 45:6121–6132 . doi: 10.1016/j.atmosenv.2011.08.045