Geophysical Research Abstracts Vol. 20, EGU2018-7740, 2018 EGU General Assembly 2018 © Author(s) 2018. CC Attribution 4.0 license.

The role of methane oxidation in the carbon cycle of the lower Amazon River

Henrique Sawakuchi (1,2,4), Nicholas Ward (3), David Bastviken (4), Marcelo Z. Moreira (1), Plinio B. Camargo (1), Vania Neu (5), Aline M. Valerio (6), Alan C. Cunha (7), Diani F. S. Less (7), Joel E. M. Diniz (7), Daimio C. Brito (7), and Jeffrey Richey (8)

(1) Center of Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, Brazil, (2) Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden, (henrique.sawakuchi@umu.se), (3) Marine Sciences Laboratory, Pacific Northwest National Laboratory, Sequim, USA, (4) Department of Thematic Studies –Environmental Change, Linköping University, Linköping, Sweden, (5) Instituto Sócio Ambiental e dos Recursos Hídricos, Universidade Federal Rural da Amazônia, Belém, Brazil, (6) Departamento de Sensoriamento Remoto, Instituto Nacional de Pesquisas Espaciais, São José dos Campos, Brazil, (7) Departamento de Meio Ambiente e Desenvolvimento, Universidade Federal do Amapá, Macapá, Brazil, (8) School of Oceanography, University of Washington, Seattle, USA

Inland waters are recognized as an important source of methane (CH₄) to the atmosphere. Recent estimates have shown that the emissions from rivers and streams can be equivalent in order of magnitude to the uptake of CH₄ by soils. The CH₄ emitted to the atmosphere is a fraction of CH₄ that is not subjected to methane oxidation (MOX). Aquatic MOX may represent an important sink of CH₄. Microbial consumption of CH₄ in large rivers in the Amazon basin can be responsible for the reduction in emissions to the atmosphere of up to 2 TgCH $_4$ yr $^{-1}$. The consumed CH₄ is converted into partly CO₂ and partly biomass, that becomes available to the food web along the river continuum and potentially in the ocean. The relative magnitude of these two CH₄ fates and how they influence the aquatic carbon cycle is not well known. Here, we present ecosystem MOX estimates combined with ¹³C-CH₄ enrichment incubations to evaluate the importance of MOX and the transformation rates of dissolved CH₄ into biomass and CO2 in the water column of the lower Amazon River. Fluxes to the atmosphere were measured to better understand the CH₄ dynamics and the role CH₄ plays in the aquatic carbon cycle. Floating chamber measurements of CH₄ fluxes, stable isotopic composition of the surface water dissolved CH₄, and bubbles retrieved from shallow areas near the shore, along with surface water incubations with labeled ¹³C-CH₄, were made during the rising water season in February 2016. The overall ecosystem MOX prevented approximately 56-74 % of the CH₄ emissions. The incubations showed transfer of the ¹³C labeled CH₄ into both biomass and CO₂, indicating that the consumed CH₄ is converted into biomass that can support downstream food webs.