

Can N fertilizer application rate be reduced by considering atmospheric N deposition as a kind of fertilizer input in croplands of China?

Jianlin Shen (1), Yong Li (1), Xuejun Liu (2), and Jinshui Wu (1)

(1) Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China (jlshen@isa.ac.cn), (2) College of Resources and Environmental Sciences, China Agricultural University, Beijing, China

Atmospheric nitrogen (N) deposition is in the high level in the recent years in China due to the high emissions of NH₃ and NO_x. The large amount of N from atmospheric deposition in the croplands is an important N nutrient and should be considered in nutrient management. In this study, atmospheric dry and wet N depositions were monitored in a typical paddy field and a tea field during 2011 to 2015 in subtropical China with the aim to evaluate the contribution of N deposition to N input in croplands. Furthermore, the N deposition in major croplands in China was also reviewed and the proportion of N deposition to the total N application rate in croplands was evaluated. The results showed that the annual mean N depositions at the paddy site and the tea field sites were as high as 41 and 60 kg N ha⁻¹, with dry deposition contributed to 41 to 57 % of the total N deposition. At both sites, NH₃ emissions were higher than NH_x deposition (dry depositions of NH₃ and particulate NH₄⁺ and wet deposition of NH₄⁺), showing that the sites were net sources of atmospheric NH_x. On the other hand, the emissions of NO_x at the sites were much lower than the deposition of NO_y (dry depositions of NO₂, HNO₃ and particulate NO₃⁻ and wet deposition of NH₄⁺), showing that the sites were net sinks of atmospheric NO_x. The nitrogen fertilizer application rates were 300 and 450 kg N ha⁻¹ yr⁻¹, respectively, and if the deposited N from atmosphere was also considered as a kind of N fertilizer, then the N fertilizer application rates can be reduced by 14% at the two sites. In other regions of China (e.g. North China Plain, the Yangtze River Delta, Sichuan Basin), atmospheric N deposition in the croplands accounted for 10 to 20% of the N application rates, indicating that a large amount of N fertilizer can be reduced when considering atmospheric N deposition as a source of N fertilizers.