

Greenhouse gas (CO₂, CH₄, and N₂O) dynamics and underlying processes in two of the world's major rivers: the Elbe and the Murray

Christopher Caldow (1), Thorsten Warneke (2), Ines Hilke (3), Helmut Fischer (4), Justus Notholt (2), Clare Paton-Walsh (1), and David Griffith (1)

(1) Centre for Atmospheric Chemistry, University of Wollongong, Wollongong, Australia (ccaldow@uow.edu.au), (2) Institute of Environmental Physics, University of Bremen, Bremen, Germany, (3) Max Planck Institute for Biogeochemistry, Jena, Germany, (4) Federal Institute of Hydrology (BfG), Koblenz, Germany

Global greenhouse gas (CO₂, CH₄ and N₂O) emissions from inland waters are significant yet estimates remain highly varied and are quoted with large uncertainty^{1,2}. Recent CO₂ estimates range from 0.75 – 3.3 Pg C yr⁻¹ and are comparable in magnitude to the global land or ocean anthropogenic CO₂ sink^{1–5}. However, these estimates are not adequately constrained by small scale measurement data, particularly for CH₄ and N₂O, which have received far less attention than CO₂^{6,7}.

Here we present in-situ measurements of inland water-atmosphere greenhouse gas exchange obtained over several hundred kilometres on the Elbe (Germany/Czech Republic) and Murray (Australia) Rivers. Gases were analysed using a Fourier-Transform InfraRed (FTIR) Trace Gas Analyser, which allowed simultaneous and continuous measurement of CO₂, CH₄, N₂O, CO and δ¹³C in CO₂. This analyser was coupled to an equilibrator and a floating chamber to facilitate either continuous measurement of gas partial pressures within the waters or the overlying atmosphere, or the direct measurement of water-atmosphere gas exchange. Gas transfer velocities were derived from these measurements and also modelled from water and air turbulence parameters. A suite of biogeochemical parameters, such as dissolved organic carbon (DOC) and dissolved inorganic nitrogen (DIN), were measured to gain further insight into the broader mechanisms driving greenhouse gas exchange.

This presentation will reveal the high spatio-temporal variability of greenhouse gas partial pressures measured along the land to ocean aquatic continuum. Such variability is not commonly reported in the literature, as measurements are usually obtained through discrete sampling, at coarse spatio-temporal resolution. Furthermore, it will highlight significant natural and anthropogenic drivers of variability such as diurnal cycling, discharge from wastewater treatment facilities, water regulation, including weirs and altered flow regimes, and connectivity with floodplain wetlands. The relationships between greenhouse gases and routinely measured biogeochemical parameters will be discussed. Finally, this research will provide an estimate of the water-atmosphere greenhouse gas exchange from two globally significant inland water systems.

References

- [1] Regnier, P. et al. Anthropogenic perturbation of the carbon fluxes from land to ocean. *Nature Geoscience* 6(8): 597-607, 2013.
- [2] Raymond, P. A. et al. Global carbon dioxide emissions from inland waters. *Nature* 503(7476): 355-359, 2013.
- [3] Tranvik, L. J. et al. Lakes and reservoirs as regulators of carbon cycling and climate. *Limnology and Oceanography* 54(6 PART 2): 2298-2314, 2009.
- [4] Cole, J. J. et al. Plumbing the Global Carbon Cycle: Integrating Inland Waters into the Terrestrial Carbon Budget. *Ecosystems* 10(1): 172-185, 2007.
- [5] Aufdenkampe, A. K. et al. Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere. *Frontiers in Ecology and the Environment* 9(1): 53-60, 2011.
- [6] Bastviken, D. et al. Freshwater methane emissions offset the continental carbon sink. *Science* 331(6013): 50, 2011.
- [7] Beaulieu, J. J. et al. Nitrous oxide emission from denitrification in stream and river networks. *Proceedings of the National Academy of Sciences of the United States of America* 108(1): 214-219, 2011.