

Preliminary validation and inter-comparison of XCO₂ retrieved from GOSAT and OCO-2 using the University of Leicester retrieval algorithm

Jasdeep Anand (1), Peter Somkuti (1), Robert Parker (1), Hartmut Boesch (1), and Annmarie Eldering (2)

(1) Earth Observation Science, University of Leicester, Leicester, United Kingdom (jsa13@le.ac.uk), (2) Jet Propulsion Laboratory, California Institute of Technology, Pasadena, USA

Reliable observations of atmospheric CO₂ concentrations are essential to our understanding anthropogenic carbon emissions and their impact on the global climate system. Satellite measurements of the column-averaged concentration (XCO₂) are useful in constraining flux estimations, but require robust validation to ensure their quality.

Currently, XCO₂ is measured from space using the JAXA Greenhouse Gases Observing Satellite (GOSAT, launched 2009) and Orbiting Carbon Observatory-2 (OCO-2, launched 2014) instruments. Both instruments observe radiation from the near infrared (NIR) and short-wave infrared (SWIR) bands, but differ significantly in their mission design; GOSAT observes global XCO₂ distributions using a nadir 10.5 km footprint, while OCO-2 is capable of resolving emission sources at \sim 1 km resolution, albeit without global coverage. Despite their differences in coverage, both satellites could be combined to provide a global time series. However, combining both datasets first requires robust validation against a common standard.

For this work, the University of Leicester (UoL) full physics retrieval algorithm has been adapted to retrieve XCO₂ from both satellite missions allowing consistent inter-comparisons of both datasets against models and ground-based Total Carbon Column Observing Network (TCCON). Comparisons are also made against retrievals performed by the operational NASA algorithm for OCO-2.