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In a nutshell
Probabilistic forecasts for low-visibility conditions, relevant for flight

planning, are developed using a statistical tree-based boosting model.
The forecasts are designed to provide the air traffic controllers with

information for short-term regulation, and for the air traffic managers to
improve flight plan construction.

Introduction

Safety operations with low visibility: Results:
Instrument landing approach Decreased capacity
Increased spacing distances =⇒ Flight delays
Raised taxi times Economic loss

Accurate forecasts of low visibility allow: Lead times required:
Short-term regulations −→ rapid nowcasts (1–2 h)
Flight plan reorganizations −→ nowcasts (3–18 h)
Better long-term flight planning −→ medium-range (1–14 d)

Low-Visibility Procedure (lvp) States

• Define safety procedures during low
visibility that reduce airport capacity

• Occur mainly with fog, low ceiling, or
heavy precipitation

Categories of lvp at Vienna Airport:
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3 40% 1.5% Figure 1: Illustration of ceiling
(top) and runway visual range
(bottom).

Explanatory Variables

Observations∗ NWP model outputs (DET, ENS)∗∗

Variable Unit Description Variable Unit Description

lvp [0,1,2,3] low-visibility procedure state bld [Jm−2] boundary layer dissipation
rvr [m] runway visual range blh [m] boundary layer height
vis [m] visibility e [m.w.e] evaporation
cei [ft] ceiling cdir [Jm−2] clear sky direct solar radiation
dpd [◦C] dew point depression dpdmodel [◦C] dew point depression
dts [◦C] temp. difference to surface dtsmodel [◦C] temp. difference to surface
sza [◦] solar zenith angle lcc [0 – 1] low cloud cover

shf [Jm−2] sensible heat flux
tp [m] total precipitation

∗ the observations are chosen using the results of Kneringer et al. (2017)
∗∗ the NWP models used are the ECMWF deterministic high resolution model (DET) and the ensemble
prediction system (ENS). From the ENS only mean and spread is used. The predictors are selected
with the results of Herman and Schumacher (2016) and meteorological expertise. The maximum
lead time of the DET is 10 days; for the ENS it is 15 days

Tree-Based Boosting Models

Figure 2: Schematic illustration of a
boosting tree.

Model Development
1 Develop a single decision tree
2 Compute residuals∗ of the model
3 Fit a new tree on the residuals
4 Add new tree to previous ones
5 Repeat recursively steps 2–4
∗ negative gradient vector of the likelihood function

Models are developed with data
from 5 cold seasons (2011–2017).

Nowcasts

The statistical nowcasts outperform persistence and climatology
at each lead time (Fig. 3). Observations have highest influence on
shortest lead times. The impact of DET model outputs increases
with mid-term nowcasts after 2 hours lead time. They control the
predictions with lead times longer than 8 hours, when the range of
long-term nowcasts starts. Most important observations are the
lvp state and dew point depression. From the DET model dew
point depression and evaporation have highest impact (Fig. 4).
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Figure 3: Nowcast performance of persistence, climatology, and boosting trees with different
inputs.
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Figure 4: Explanatory variables with highest impact on lvp nowcasts. The impact is computed
by variable permutation tests. Higher numbers concern to a stronger impact.
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Medium-Range Forecast and Forecast Horizon

The performance of the statistical models converges strongly to
climatology for lead times longer than 8 days. After this time the
forecast horizon is approximately reached. Postprocessed outputs
of DET and ENS perform similarly until 5 days lead time. Afterwards
models with ENS information have higher benefit. Raw ENS per-
forms similarly to statistical models between the lead times 1 day
and 5 days; raw DET is outperformed at each lead time (Fig. 5).
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Figure 5: Medium-range performance of models with deterministic and ensemble information.
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Figure 6: Variables with highest impact for medium-ran-
ge forecasts of deterministic and ensemble based models.

Raw ENS and raw DET
are computed with the
NWP outputs visibility
and ceiling. The data ar-
chive of these variables,
however, is too short for
the usage as predictors.

The impact of individual
predictors on the fore-
cast decreases strongly
after reaching the fore-
cast horizon (Fig. 6).

Take Home Message

• Probabilistic lvp forecasts have a benefit over persistence,
climatology, and raw DET outputs until 8 days lead time

• Most important inputs for lvp state nowcasts are
• Observations of lvp and dew point depression
• DET outputs of dew point depression and evaporation

• Most important predictor variables for medium-range forecasts
are dew point depression, boundary layer height, evaporation, and
sensible heat flux from NWP models
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