

Snow drift modelling in complex terrain

Jutta Staudacher¹, Michael Winkler¹, Marc Olefs¹

• 2-layer-scheme, little input data, high temporal and spatial resolution, low computational effort

Based on a semi-empirical statistical snow drift point model, lateral distribution via a topographic parameter

1. Snow drift

The snow transport due to wind plays a crucial role for the snowpacks structure and its temporal and spatial development, especially in complex terrain.

Snow drift mainly adds a load of snow to some areas and erodes it elsewhere, thereby increasing shear stress. Therefore it's an **important factor** regarding **snow** distribution and thus also avalanche danger.

Snow drift is a **complex** process, depending on

several meteorological parameters (e.g. precipitation or wind), the topography and the properties of the existing snowpack, all of which may vary substantially over short distances and times.

4. Results

CURRENT APPLICATION: Modelling maximum potential of snow drift

Extreme wind conditions:

Historical storm events in Tyrol, Austria: INCA-model wind @10m, (Haiden et al., 2011)

- High quantities of erodible snow as initial condition: Great amount of old snow; 72h new snow sum for a return period of 150 yrs
- Incl. settling of the snowpack , without additional precipitation

2. Goal

Development of a **snow drift model**

- ... for **modelling** snow drift for selected cases (analysis mode).
- ... to estimate extreme additional snow loads due to snow drift and take it into account for avalanche risk management and planning.

• ... for use in the operational snow cover model SNOWGRID (Olefs et al., 2013): large model domain, simplified internal snow physics, high temporal (15 min) and **spatial** (100 m) **resolution**.

3. Snow drift model

- Simple 2-layer-scheme (old snow, new snow)
- Required **input**:
 - Wind speed, height and density of old and new snow, topographic parameters
- Captures initial and main process of local and measureable snow drift \rightarrow saltation
- Includes settling and snow density increase due to wind
- Computes available snow drift amount for each grid cell:
 - Independent of wind direction and therefore unsigned
 - Friction velocity u* from logarithmic wind profile
- if $u^* > u^*_{th}$: available snow drift amount = c * u*
- u^{*}_{th} ... friction velocity threshold, depending on snow density (according to Liston et al., 2007)
- c ... coefficient (based on in-house development of semi-empirical statistical snow drift point model)
- Lateral distribution of available snow drift amount:
- Based on the terrain parameter **negative openness** (idea: Hanzer et al., 2016)
- Threshold determines donor and acceptor cells

FUTURE APPLICATION: Implementation in operational snow cover model SNOWGRID

- First results of **net snow drift forecast with SNOWGRID**: Temporal resolution: 15 min, spatial resolution: 100 m
- **Incl. settling** of the snowpack and **precipitation**

3D-maps of 24h-net snow drift amount from 4th January 12.00 noon to 5th January 12.00 noon for the mountain range in the North of Innsbruck, Austria. red pixels: net snow erosion, blue pixels: net snow accumulation

of snow drift amount

© Yokoyama et al., 2002; φ = mean nadir angle of compass direction(s), L=radial limit of calculation (A) Low score of negative openness \rightarrow wind exposed (B) High score of negative openness \rightarrow wind protected

Concept: lateral snow distribution

snow holding capacity based on different land cover types (Corine2012)

old snow layer

- new snow layer
- snow drift amount
- additional snow drift amount for donor cell; is not accumulated but redistributed in the next timestep

	•	•	
donor	donor	acceptor	acceptor
1D-lateral	snow distri	ibution sch	eme

5. Outlook

- Consideration of sublimation and decrease of snow drift amount as a function of the distance
- Implementation of donor and acceptor cells based on sectors of wind direction

...

¹⁾ ZAMG – Zentralanstalt für Meteorologie und Geodynamik, Austria jutta.staudacher@zamg.ac.at michael.winkler@zamg.ac.at marc.olefs@zamg.ac.at

The work was cofinanced by the Forest Technical Service of Torrent and Avalanche Control Tyrol (WLV).

