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A key step in data-driven environmental modelling, including for hydrological purposes, is input variable selection
(IVS) to ensure that the least number of variables with minimum redundancy are used to characterize the inherent
relationship between inputs and outputs. Hydrological predictions in ungauged catchments is one such area
where the information on influential predictors of runoff signatures guides in understanding dominant controls
of meaningful information transfer from gauged to ungauged locations (i.e. regionalization). This understanding
is valuable especially for the analysis of hydrological similarity among ungauged catchments, e.g. to identify
reference (donor) catchment(s). Large-sample hydrology can help to gain useful insights on how these significant
predictors change over different runoff signatures representing particular hydrological conditions as well as
within different groups of similar catchments. This study explores the added value of clustering for input variable
selection in the case of catchments across continental USA using the CAMELS dataset (Addor et al., 2017). We
employ the method of k-means clustering on the input space consisting of topography, soil, geology, vegetation and
climate attributes as a way to deal with heterogeneity and complexity in hydrological processes, and thus, aiming
to identify similar groups of catchments. The input variables (for predicting selected hydrological attributes) are
determined by three IVS filter algorithms (partial mutual information, partial correlation input selection, and
iterative input selection), then evaluated and compared for among different clusters and when no clustering method
is applied. We present and discuss the results for three hydrological attributes — 95% flow percentile (low flows),
mean daily discharge (medium flows), and 5% flow percentile (high flows) — in order to account for variability
in hydrological conditions, and to investigate the dominant catchment and/or climate characteristics controlling
low/medium/high flow predictability at ungauged locations. The findings of our study have implications for
reference (donor) catchment selection and hydrological model independent regionalization (aka hydrostatistical
or data-driven methods), and are particularly relevant to understanding hydrological similarity and catchment
classification in the absence of local runoff observations.
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