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Background

Hydrological predictions in ungauged catchments is one such 

area where the information on influential predictors of 

runoff signatures guides in understanding dominant controls of 
meaningful information transfer from gauged to ungauged locations 

(i.e. regionalization). This understanding is valuable especially for the 

analysis of hydrological similarity among ungauged catchments, 

e.g. to identify reference (donor) catchment(s).

A key step in 

data-driven environmental modelling 

is input variable selection to ensure that 

the least number of variables with minimum 
redundancy are used to characterize the inherent 

relationship between inputs and outputs.

Large-sample hydrology can help to gain useful insights on 

how these significant predictors change over different 

runoff signatures representing particular hydrological conditions 

as well as within different groups of similar catchments.

Data

Catchments with at least 1 attribute 

with NA value is removed from the analysis. 

To explore the added value of clustering 

for input variable selection
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Methodology IVS methods
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Partial Mutual Information (PMI)
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Clustering of catchments using available 
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30% Validation data

~ 201 gauges
193

671 

gauges, i.e. catchments

643

Clustering is performed on input space consisting of 31
(numeric) variables representing catchment:

671 watersheds across continental USA
(unimpacted / less impacted by anthropogenic changes)

Where?

CAMELS

Catchment Attributes and MEteorology
for Large-sample Studies

Addor et al., 2017, HESS

Addor, N., Newman, A. J., Mizukami, N., & Clark, M. P. 
(2017) The CAMELS data set: catchment attributes and 

meteorology for large-sample studies. Hydrology and
Earth System Sciences, 21(10), 5293-5313. 

https://www.hydrol-earth-syst-sci.net/21/5293/2017/

70%  Training data

~ 470 gauges
450

• Most well-known traditional clustering method based on a center-based 
partitional algorithm. Number of clusters, k, is a user-specified parameter. 

• Tends to produce clusters of roughly equal size. Clustering depends greatly on 

the initial choice of cluster centers.

• Emphasizes homogeneity rather than separation; it is usually more successful 

regarding small within-cluster dissimilarities than regarding finding gaps between 

clusters.

• Not capable of forming clusters with non-convex shapes.

• Efficient for large data sets, only works on numerical data.

• Unable to handle noisy data and outliers.

• The algorithm of Hartigan and Wong (1979) with k= 10 is used.

Cluster “k”

Total number of clusters is 

determined to be 10 using Elbow 

method, Gap statistic and 

Silhouette method.

• Information theory based filter algorithm developed by Sharma (2000), later modified by 

Bowden et al. (2005) and May et al. (2008).

• It is a model-free approach capable of accounting for input redundancy.

• Inputs are selected in a stepwise procedure based on the estimation of the PMI, which 

measures the partial dependence between each input variable and the output, conditional 

on the inputs that have already been selected. The term “partial” implies the partial or 
additional dependence the new predictor can add to the existing prediction model.

• Nonparametric kernel methods are used to characterize joint pdf of variables.

• Linear correlation-based filter algorithm introduced by May et al. (2008). 

• PCIS algorithm is aimed at finding the partial linear correlation between two variables 

after removing the effects of other variables. Pearson correlation coefficient is used to 

estimate the strength of the relationship between inputs and output and a multiple linear 

regression based on least squares. Algorithm is terminated when the selection of 

additional inputs no longer results in an improvement (increase). No tuning is required. 

• R code is available through IVS4EM project (Galelli et al., 2014).

• A hybrid filter-wrapper IVS method proposed by Galelli and Castelletti (2013).

• One input variable is selected at each iteration on the basis of the partial dependence 

between each input variable and the output relies on a tree-based ranking method to 

estimate the information gained from the data. Extra-Trees (Geurts et al., 2006) is used

for both ranking and modelling as a regression method. MATLAB toolbox is available 

through the IVS4EM project (Galelli et al., 2014).

• No assumption on dependence between input and output variables is needed.

Catchments in 

north and mid western 

coastal regions are 

identified by 

Clusters 1 and 8, 

respectively, the latter 

representing energy-

limited catchments 

with WET climate 

(i.e. aridity index <1) as 

can be seen on the 

Budyko Curve.

By looking at the 
Budyko Curve, one 

can say that the 
differences in annual 

water balance 
behaviour of 

catchments in 
Clusters 2, 5, 7

and 9 are not very 
significant.
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• IVS is important for hydrological predictions in 

ungauged catchments! And clustering of input data 

space adds value!

• Climate and topography related variables are more 

frequently selected compared to soil, geology and 

vegetation attributes. However, there are cases 

where geology becomes more important as a 

predictor of the system.

• We found that selected variables for predicting 

hydrological attributes are not the same for different 

clusters.

• Moreover, selected variables for a given cluster vary 

depending on the hydrological attribute of interest.

• More in-depth analysis of IVS results is in progress.

• The effect of clustering method choice could be 

further explored.

• Next step: training data-driven models for each 

cluster to make hydrological predictions on validation 

set.
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A key step in data-driven environmental modelling, including for hydrological purposes, is input variable selection

(IVS) to ensure that the least number of variables with minimum redundancy are used to characterize the inherent

relationship between inputs and outputs. Hydrological predictions in ungauged catchments is one such area

where the information on influential predictors of runoff signatures guides in understanding dominant controls

of meaningful information transfer from gauged to ungauged locations (i.e. regionalization). This understanding

is valuable especially for the analysis of hydrological similarity among ungauged catchments, e.g. to identify

reference (donor) catchment(s). Large-sample hydrology can help to gain useful insights on how these significant

predictors change over different runoff signatures representing particular hydrological conditions as well as

within different groups of similar catchments. This study explores the added value of clustering for input variable

selection in the case of catchments across continental USA using the CAMELS dataset (Addor et al., 2017). We

employ the method of k-means clustering on the input space consisting of topography, soil, geology, vegetation and

climate attributes as a way to deal with heterogeneity and complexity in hydrological processes, and thus, aiming

to identify similar groups of catchments. The input variables (for predicting selected hydrological attributes) are

determined by three IVS filter algorithms (partial mutual information, partial correlation input selection, and

iterative input selection), then evaluated and compared for among different clusters and when no clustering method

is applied. We present and discuss the results for three hydrological attributes – 95% flow percentile (low flows),

mean daily discharge (medium flows), and 5% flow percentile (high flows) – in order to account for variability

in hydrological conditions, and to investigate the dominant catchment and/or climate characteristics controlling

low/medium/high flow predictability at ungauged locations. The findings of our study have implications for

reference (donor) catchment selection and hydrological model independent regionalization (aka hydrostatistical

or data-driven methods), and are particularly relevant to understanding hydrological similarity and catchment

classification in the absence of local runoff observations.
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