

Using Model Output Statistics

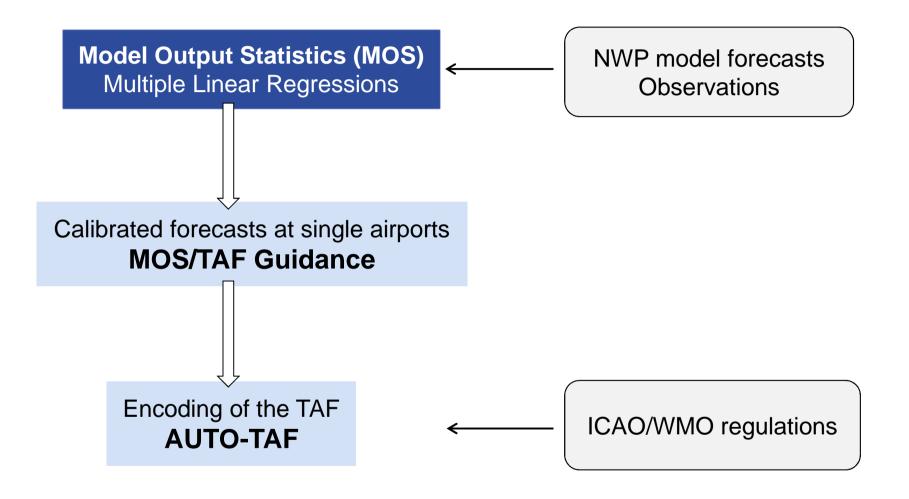
for Aerodrome Weather Forecasts

Sebastian Trepte¹, Michael Eckert¹, and Guenter Mahringer²

¹Deutscher Wetterdienst (DWD), Offenbach, Germany ²Austro Control MET Service Linz, Hoersching, Austria

EGU General Assembly 2018

AS1.2 Forecasting the weather



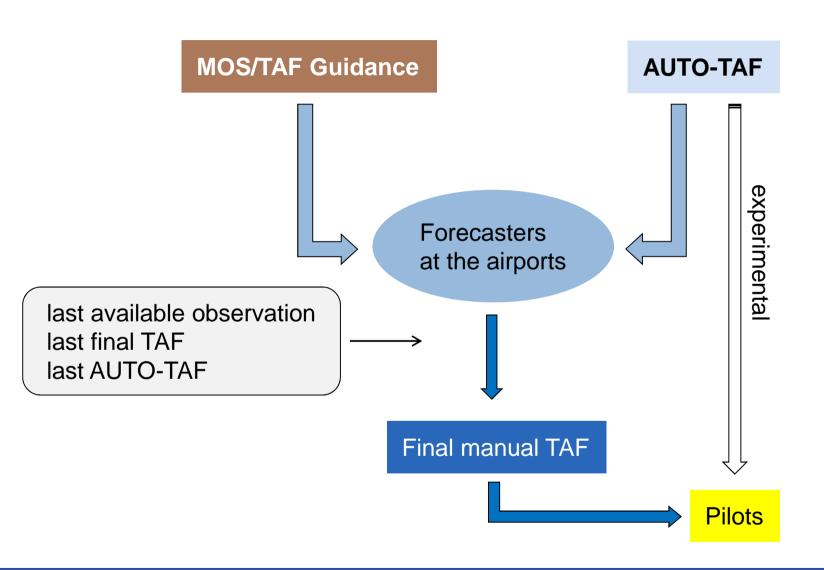
The MOS/TAF system at the DWD

Deutscher Wetterdienst Wetter und Klima aus einer Hand

MOS and AUTO-TAF code by Knüpffer and Haalman (1999) modified by DWD

Categorical and probabilistic weather forecast for a specific airport (encoded) Validity periods: 9, 24, or 30 hours

Main weather elements divided into four groups:


Wind: Visibility: Weather: Clouds:	Mean wind speed, gust speed, mean wind direction Horizontal visibility Significant weather, precipitation amounts and type Cloud cover at various flight levels, cloud base
Weather: Visibility: Wind: Clouds:	TEMPO 1608/1612 RA TEMPO 1712/1714 -SN TEMPO 1709/1712 1800 TEMPO 1712/1714 0900 TEMPO 1608/1609 17010KT BECMG 1710/1712 BKN014 basic state "mean weather
TEMPO 1608/1612 RA	1714 20005KT 9999 BKN035 TEMPO 1608/1609 17010KT TEMPO 1709/1712 1800 -SN N014 TEMPO 1712/1714 0900=
	Schootion Tranto et al. ECU Constral Assembly 2019

TAF

MOS/TAF Guidance Forecast Elements

Categorical	Probability of occurrence		
T2m, Td, T5cm			
Mean Sea Level Pressure			
Wind direction, mean wind speed, gust speed	Mean wind speed > 15/25/35 kts Gust speed > 25/30/40/45/55/65 kts		
Visibility, visibility in precipitation, total cloud cover N	Visibility < 08/05/03/1.5/0.8/0.6/0.4/0.2 km		
Cloud base (ceiling)	N under cloud base condition < 1500/1000/500/200/100 ft		
Precipitation amount last hour, past 6 hrs	Precipitation past hour, at time of observation Precipitation > 0/5 mm past 6 hrs Drizzle/Stratiform/Convective precipitation Liquid/Solid/Freezing precipitation		
Weather condition (derived)	Thunderstorm Cumulonimbus clouds		

Input

ECMWF IFS global model 00 UTC run from MOS issue 09z 12 UTC run from MOS issue 21z

SYNOP observations (hourly) and **METAR** (half-hourly) worldwide

Precipitation radar observations over Central Europe: European composite 1800 km x 1800 km, 2 km x 2 km grid, every 15 min

Lightning observations over Europe: LINET network, continuously

Output

Forecasts every hour up to +41h (hourly) for 662 airports and stations

Multiple Linear Regression

$Y = a + b_1 X_1 + b_2 X_2 + \dots + b_n X_n$

- variable to be forecast (Predictand) **Y**:
 - independent variables (Predictors)
- regression coefficients a, b_i

Aim

Selection of the predictors (n = 3 - 10 of ~250)

Calculation of the regression coefficients a_i , b_i by minimizing the root mean square error (RMSE)

X_i:

Required

Long-term historical datasets of observations and model forecasts (cases)

3 - 15 years data sample for development (MOS/TAF: 2005 – 2017)

Stepwise forward regression algorithm

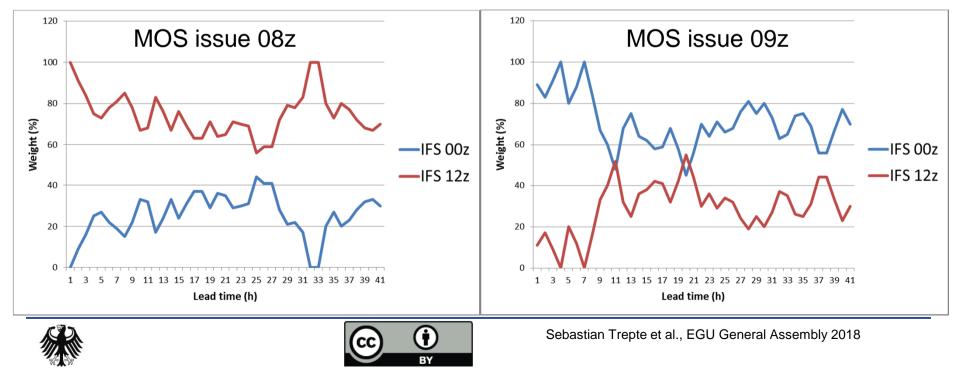
Four seasons

Reduced Error Variance $RV(MOS, DMO) = 100\% \times \frac{MSE_{DMO} - MSE_{MOS}}{MSE_{DMO}}$

- Direct Model Output (reference) DMO:
- Mean Squared Error MSE:

expected RV: 40 - 50%

Predictands	Predictors
Original observation	NWP model output
Derived observation	Remote sensing observations (precip. radar, lightning)
Probabilistic parameter	Prior observations (persistency and advection)
	Prior statistical (MOS) forecasts
	Empirical derived parameters (e.g. stability indices)
	Astronomical functions of location and time
	Climatological mean of the predictand



Two-member Lagged-Average-Ensemble

Using 00 and 12 UTC model runs and mixing them also based on MOS

Advantage: Model performances are optimal weighted for each element and time

Collaboration of national aeronautical Met service providers in Europe Aim: Common standards of forecasting systems and verification methods

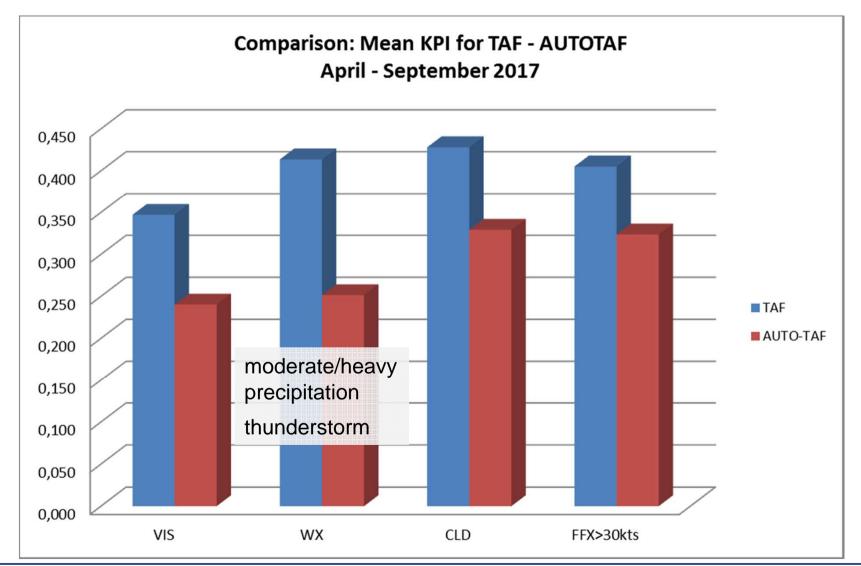
Verification

G. Mahringer (Meteorol. Appl. 15, 2008) Key Performance Indicator *KPI* = (*PSS* + *HSS*)/2

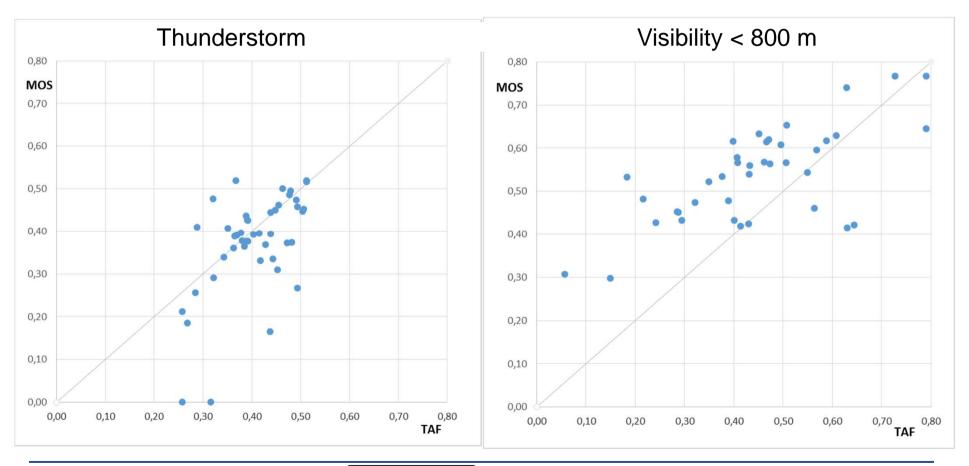
KPI

> 0.45: good forecast quality \geq 0.30: basic forecast quality < 0.30: further investigation needed **PSS:** Peirce Skill Score HSS[.] Heidke Skill Score

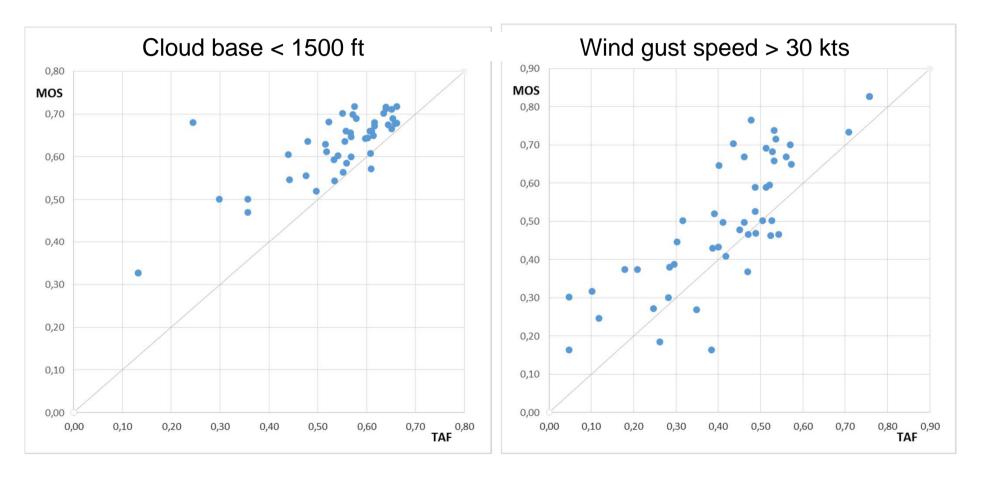
Comparisons (46 airports)


Manual TAF - AUTO-TAF Manual TAF - MOS/TAF guidance

Verification results I (G. Mahringer)



April – September 2017



April – September 2017

- Global MOS system based on ECMWF IFS model
- Wide range of model and observation predictors including remote sensing data
- MOS guidance supports the forecasters at the airports for TAF encoding
- Additional encoding algorithm for an automated TAF (AUTO-TAF)
- Verification of the MOS guidance shows similar/better quality as the manual TAF
- AUTO-TAF still underperforms both MOS guidance and manual TAF

Thank you for your attention!

