Economic valuation of inter-annual reservoir storage in water resource systems
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1. Motivation & Objective  The K sub-problems described are solved sequentially. The initial
condition of sub-problem k 4+ 1 is given by the final state from sub-
problem k. The sequential optimization of objectives Z; to Z; leads to

maximizing a limited foresight objective Z; r:
 Excessive release will threaten future supplies while unnecessary hedging K

creates economic hardship downstream.
: Zir(@p) = ) (max(Z(Q.p)} = COSVE(pi xuy, .,
 We tackle this problem for complex large-scale water resource systems using k=1 g

economic valuation of end-of-year carry-over storage.

* Inter-annual reservoir operation in large-scale water resource systems has
long been a challenge.
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3. Solution Strategy Figure 3. Severe drought in Oroville Lake in July 2011 (left) and August 2014 (right).

* A generalizable approach is proposed to estimate the economic value of
inter-annual reservoir storage. The approach can handle non-convexit . L
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2. Methodology , L I : Sllf
(ii) an optimization in the parameter '+ | _________ ‘t _______ Simulation | e
The proposed approach discretizes the full planning horizon to shorter periods space of the COSVF. Maximization (i) . :f Maximization of imited foresight objective ‘: i
(often a hydrological year) and performs sequential runs. The final state from is used to simulate the system and is i z"fapﬁme'"m i : oo
the previous year provides the initial condition to each year-long problem and carried out for a given set of COSVF E [ commutton oo e | E |
carry-over storage value function (COSVF) acts as a boundary condition parameter values p. Maximization (ii) A g 2 |
representing the value of stored water for future use. The approach uses an is then implemented through i Performing evolutionary operations E © @
evolutionary search algorithm linked to a hydro-economic optimization model (a evolutionary computation, taking ! T | ZZZZ e |
model that uses economic incentive to determine allocation while maximizing COSVF parameter space as the E =  Stopping i -
system-wide economic benefit). evolutionary algorithm’s decision ! E \ // el | [\ AN A
 We propose dividing the whole planning horizon [1,T] into K year-long time >pace. t‘\ ( neportresdts ) ,f’f ++ ﬁ \ / + ﬁ*ﬁ
frames [t, + 1,t,41]. For instance with a monthly time step and K years, B ’ R L g S R g
L = (k — 1) X 12 so [t1 1, tz] — [1:12] and [tK 1, tK+1] — [T — 11, T]- Figure 2. Proposed model workflow Figure 4. Results of the multi-objective optimization problem: a) Pareto non-dominated
A maximization sub-problem can be proposed for each year: , , _ , , , solutions (arrows show the direction of preference); b) maximum water marginal value
tran It the Véluat'on of a given reservoir (characterized t.)y p) is enough to fill that solutions (A in Figure 1); ¢) minimum water marginal \{alue solutions (C in Figure 1); and d).
reservoirs at the end of each year, any other valuation of carry-over storage maximal total value of end-of-year carry-over storage (i.e. total value of carry-over storage if
Zx(Q,p) = z fe(xt, ut, q¢) + COSVF, (p; Xtrtq? utk+1) above the “true” value will also fill that reservoir every year. To avoid this, a reservoirs are full). Note that colors represent different solution point from the flat part of the
t=tg+1 second objective is added aiming to eliminate sets of parameters that lead Pareto front.
ft(._) = bgqefit function at stage t tc? unreasonably high marginal values of water, and ther.efore, unreasonably 6. Conclusion & Outlook
u; = decisions taken at t high values of carry-over storage — recall that the marginal value of storage
X; = state of the system (typically including reservoir storage) is a COSVF’s derivative. Therefore, maximization (ii) will become a multi- * The proposed approach obtained e
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q; = vector of stochastic inflows

V1 (.) = a final value function objective optimization problem with the following fitness functions: storage marginal values that can be R .-
’1"+1 . - o e o
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Figure 1. A quadratic COSVF and its corresponding demand curve




