Cosmic radiation in the lower atmosphere with Airborne Gamma-Ray Spectroscopy

Marica Baldoncini

Università degli Studi di Ferrara

In collaboration with Matteo Albéri, Carlo Bottardi, Brian Minty, Kassandra Raptis, Virginia Strati and Fabio Mantovani

European Geoscience Union General Assembly, 8 – 13 April 2018, Wien

Topography and height correction

Topography and height correction

Cosmic radiation due to high energy gamma rays and cosmic ray particles

Topography and height correction

Cosmic radiation due to high energy gamma rays and cosmic ray particles

Topography and height correction

Aircraft radiation due to K, U and Th in the equipment

Vegetation

Soil

Atmospheric radon exhaled from rocks and soils Cosmic radiation due to high energy gamma rays and cosmic ray particles

Topography and height correction

Aircraft radiation due to K, U and Th in the equipment

Vegetation

Atmospheric radon exhaled from rocks and soils Cosmic radiation due to high energy gamma rays and cosmic ray particles

Topography and height correction

Aircraft radiation due to K, U and Th in the equipment

Vegetation

Soil

The Radgyro: a prototype aircraft for multiparametric surveys

- Engine: 1.6 liter turbo 90 kW
- Payload: 150 kg
- Fuel: 90 liter of regular gasoline
- Length: 5.2 m
- Width: 2 m
- Rotor: 8.5 m
- Space for take off < 70 m
- Flight autonomy ~3.5 hours
- Investigated area ~50 km²/h
- Easy to move without disassemble

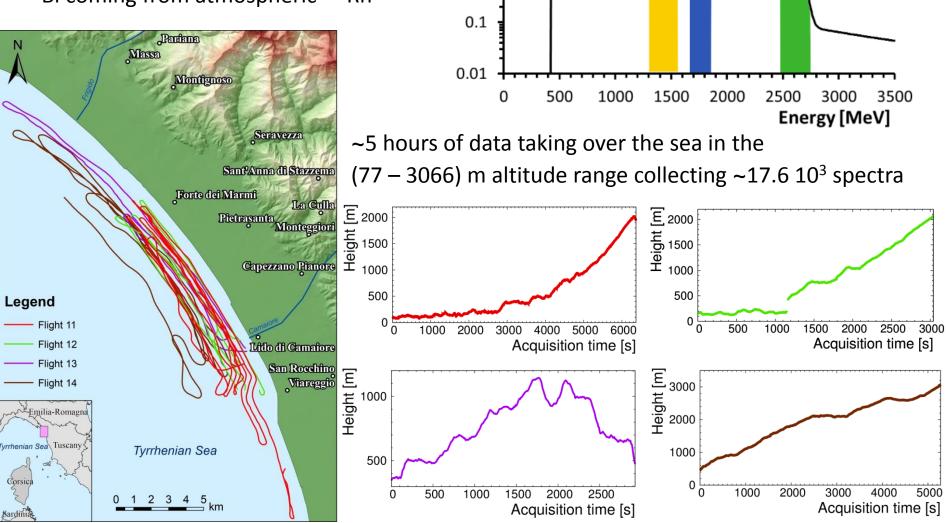
Offshore AGRS background calibration flights

100

10

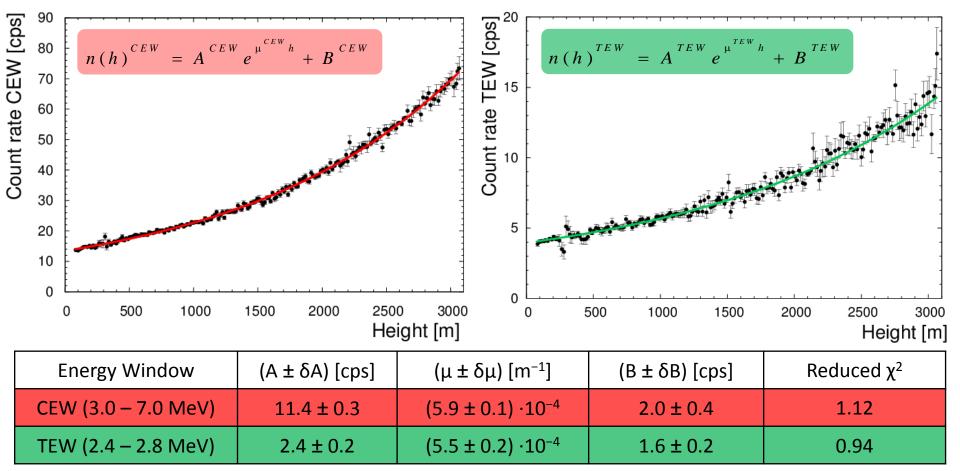
1

Counts


Terrestrial

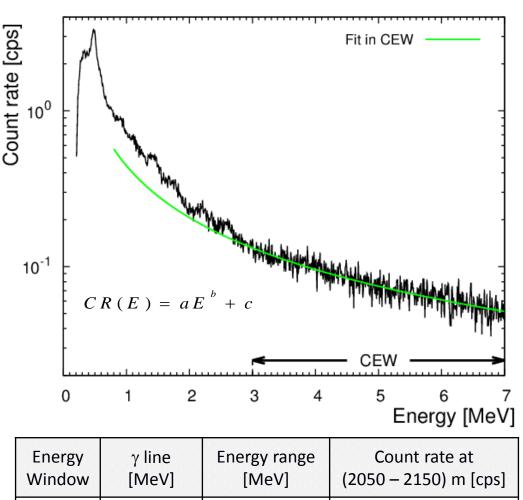
²¹⁴Bi (eU)

40 K


Cosmic

- 4 offshore AGRS surveys for measuring the *background* due to:
- cosmic radiation
- experimental setup radioactivity
- ²¹⁴Bi coming from atmospheric ²²²Rn

Count rate altitude profile


- Gamma cosmic radiation is a component of secondary cosmic rays
- At E>3 MeV all gamma radiation has cosmic origin
- In the lower atmosphere the intensity of cosmic gamma radiation exponentially increases with increasing altitude: the count rate altitude profile was reconstructed in the Cosmic Energy Window (CEW) (3.0 – 7.0) MeV and in the Tallium Energy Window (TEW) (2.4 – 2.8) MeV

Cosmic spectral shape

The cosmic spectral shape of a measured gamma spectrum can be reconstructed in the

 Cosmic Energy Window (CEW): the counting statistics has pure cosmic nature but the sole reconstruction of the high energy tail is affected by large uncertainties Gamma spectrum composed of 870 1 sec spectra acquired in the (2050 – 2150) m elevation range

1.37 - 1.57

1.66 - 1.86

2.41 - 2.81

3.00 - 7.00

12.2

8.7

8.8

41.9

1.46 (⁴⁰K)

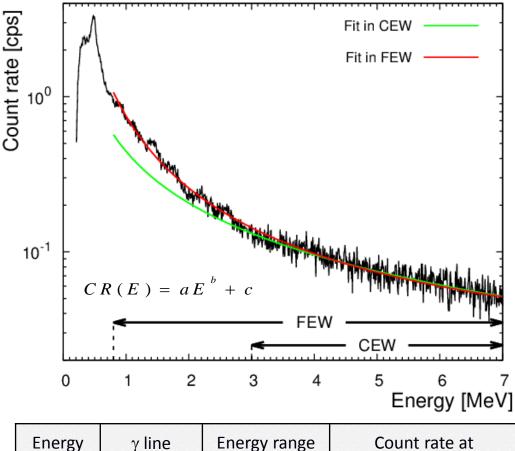
1.76 (²¹⁴Bi)

2.61 (²⁰⁸TI)

KEW

BEW

TEW

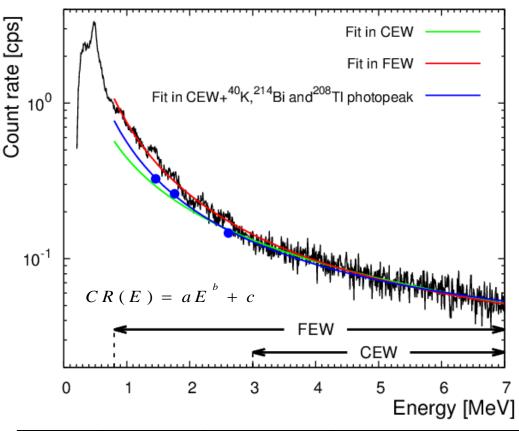

CEW

Cosmic spectral shape

The cosmic spectral shape of a measured gamma spectrum can be reconstructed in the

- Cosmic Energy Window (CEW): the counting statistics has pure cosmic nature but the sole reconstruction of the high energy tail is affected by large uncertainties
- Full Energy Window (FEW): the measured count rates comprise not only the cosmic component, but also the signal coming from the equipment radioactivity

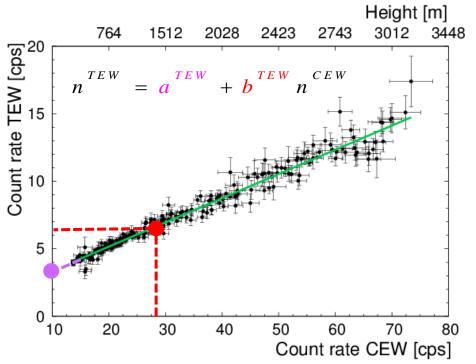
Gamma spectrum composed of 870 1 sec spectra acquired in the (2050 – 2150) m elevation range


Energy Window	γ line [MeV]	Energy range [MeV]	Count rate at (2050 – 2150) m [cps]
KEW	1.46 (⁴⁰ K)	1.37 – 1.57	12.2
BEW	1.76 (²¹⁴ Bi)	1.66 - 1.86	8.7
TEW	2.61 (²⁰⁸ TI)	2.41 - 2.81	8.8
CEW	/	3.00 - 7.00	41.9

Cosmic spectral shape

The cosmic spectral shape of a measured gamma spectrum can be reconstructed in the

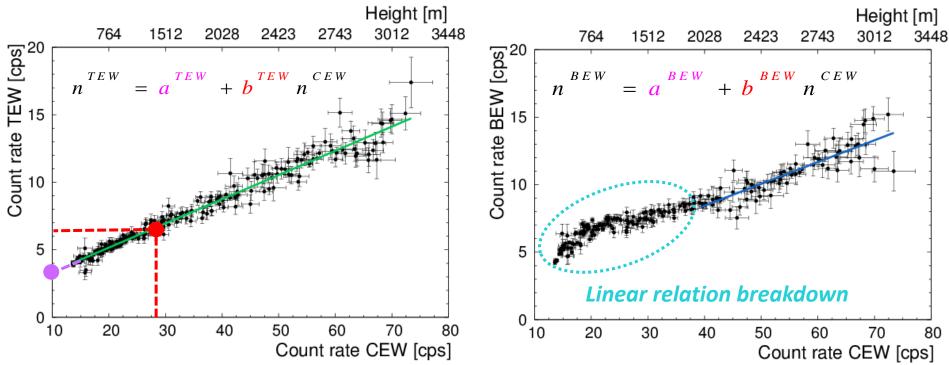
- Cosmic Energy Window (CEW): the counting statistics has pure cosmic nature but the sole reconstruction of the high energy tail is affected by large uncertainties
- Full Energy Window (FEW): the measured count rates comprise not only the cosmic component, but also the signal coming from the equipment radioactivity
- CEW + ⁴⁰K + ²¹⁴Bi + ²⁰⁸Tl photopeaks aid constraining the low energy trend of the cosmic shape, necessary to separate the constant count rate components due to K, U and Th in the equipment


Gamma spectrum composed of 870 1 sec spectra acquired in the (2050 – 2150) m elevation range

Energy Window	γ line [MeV]	Energy range [MeV]	Count rate at (2050 – 2150) m [cps]
KEW	1.46 (⁴⁰ K)	1.37 – 1.57	12.2
BEW	1.76 (²¹⁴ Bi)	1.66 - 1.86	8.7
TEW	2.61 (²⁰⁸ Tl)	2.41 - 2.81	8.8
CEW	/	3.00 - 7.00	41.9

Cosmic and aircraft background count rates

The CR in the natural radionuclides energy windows are linearly related to the count rate in the CEW

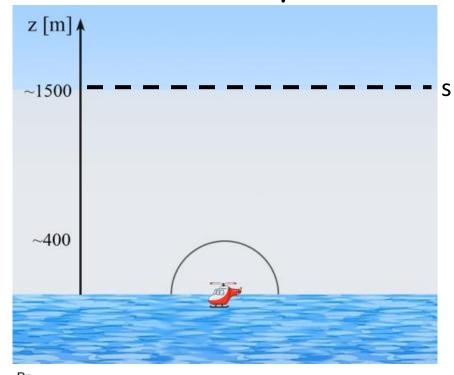


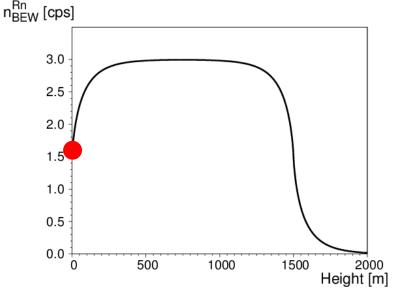
Linear regressions between count rates in the *i*-th energy window and in CEW allow for correcting for background the CRs measured during regional AGRS surveys

b: cosmic stripping ratio	Energy Window	(a ± δ a) [cps]	(b ± δ b) [cps/cps in CEW]	MDA	Reduced χ2
a: aircraft constant	KEW	3.7 ± 0.4	0.20 ± 0.01	0.05·10 ⁻² g/g	1.00
background count	BEW	2.0 ± 0.4	0.16 ± 0.01	0.4 μg/g	1.02
rate	TEW	1.58 ± 0.04	0.179 ± 0.002	0.8 μg/g	1.02

Cosmic and aircraft background count rates

The CR in the natural radionuclides energy windows are linearly related to the count rate in the CEW

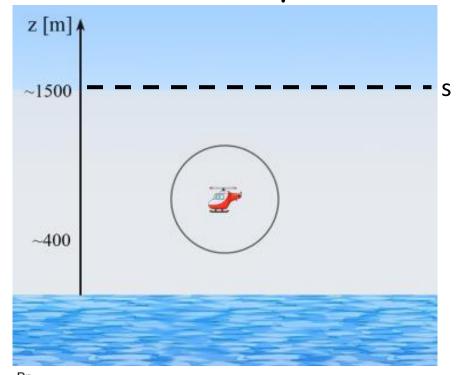



Linear regressions between count rates in the *i*-th energy window and in CEW allow for correcting for background the CRs measured during regional AGRS surveys

b: cosmic stripping ratio	Energy Window	(a ± δ a) [cps]	(b ± δ b) [cps/cps in CEW]	MDA	Reduced χ2
a: aircraft constant	KEW	3.7 ± 0.4	0.20 ± 0.01	0.05·10 ⁻² g/g	1.00
background count	BEW	2.0 ± 0.4	0.16 ± 0.01	0.4 μg/g	1.02
rate	TEW	1.58 ± 0.04	0.179 ± 0.002	0.8 µg/g	1.02

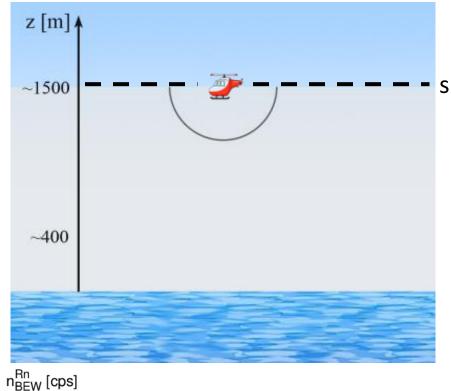
$$n(h) = A^{BEW} e^{\mu^{BEW} h} + B^{BEW} + n_{Rn}$$

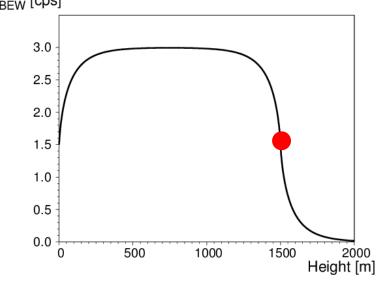
- Atmospheric ²²²Rn vertical profile typically shows a diurnal mixing layer at s ~ 1-2 km
- A new theoretical model was developed to describe the n_{Rn} vertical profile on the basis of the ²²²Rn concentration distribution and of the mean free path of ²¹⁴Bi unscattered photons, which is responsible for the r ~ 400 m AGRS spherical field of view


$$n(h) = A^{BEW} e^{\mu^{BEW} h} + B^{BEW} + n_{Rn}$$

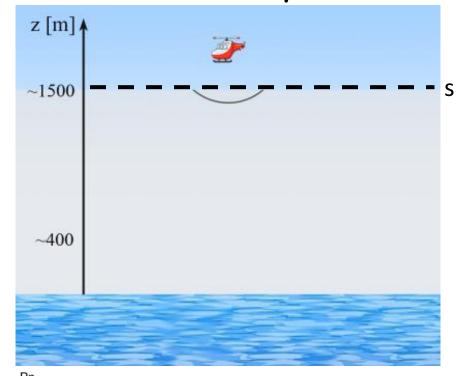
- Atmospheric ²²²Rn vertical profile typically shows a diurnal mixing layer at s ~ 1-2 km
- A new theoretical model was developed to describe the n_{Rn} vertical profile on the basis of the ²²²Rn concentration distribution and of the mean free path of ²¹⁴Bi unscattered photons, which is responsible for the r ~ 400 m AGRS spherical field of view

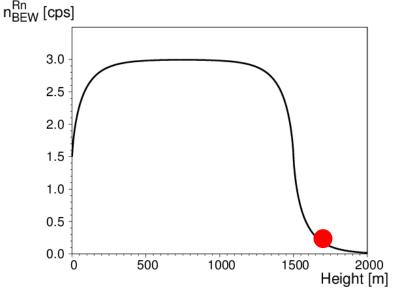
$$n(h) = A^{BEW} e^{\mu^{BEW} h} + B^{BEW} + n_{Rn}$$


- Atmospheric ²²²Rn vertical profile typically shows a diurnal mixing layer at s ~ 1-2 km
- A new theoretical model was developed to describe the n_{Rn} vertical profile on the basis of the ²²²Rn concentration distribution and of the mean free path of ²¹⁴Bi unscattered photons, which is responsible for the r ~ 400 m AGRS spherical field of view

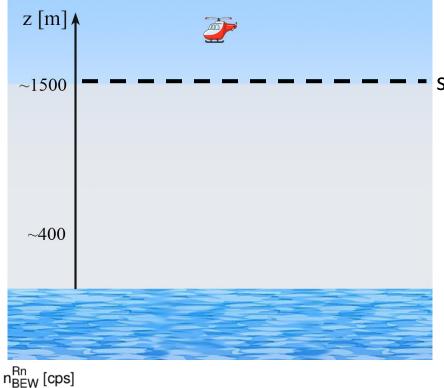


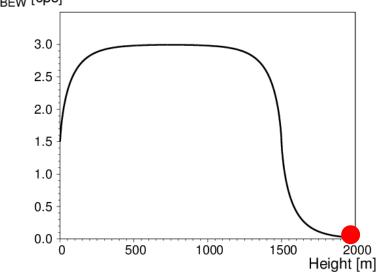
$$n(h) = A^{BEW} e^{\mu^{BEW} h} + B^{BEW} + n_{Rn}$$


- Atmospheric ²²²Rn vertical profile typically shows a diurnal mixing layer at s ~ 1-2 km
- A new theoretical model was developed to describe the n_{Rn} vertical profile on the basis of the ²²²Rn concentration distribution and of the mean free path of ²¹⁴Bi unscattered photons, which is responsible for the r ~ 400 m AGRS spherical field of view

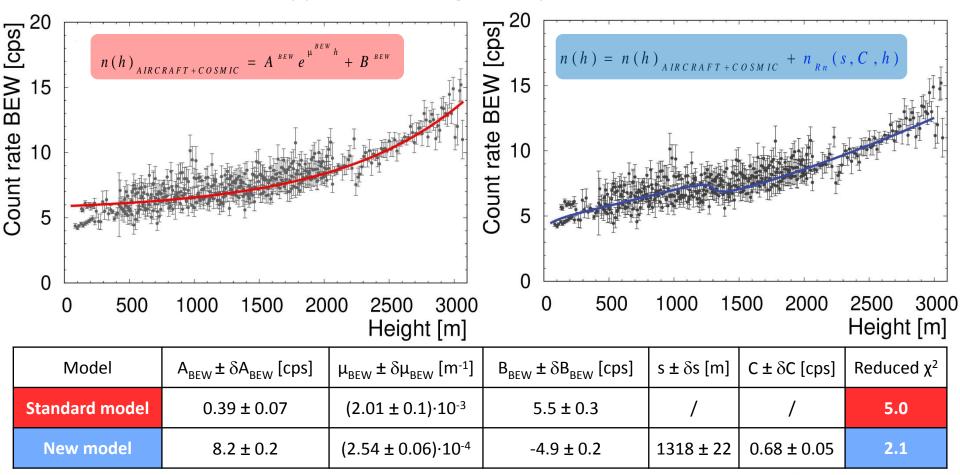


$$n(h) = A^{BEW} e^{\mu^{BEW} h} + B^{BEW} + n_{Rn}$$


- Atmospheric ²²²Rn vertical profile typically shows a diurnal mixing layer at s ~ 1-2 km
- A new theoretical model was developed to describe the n_{Rn} vertical profile on the basis of the ²²²Rn concentration distribution and of the mean free path of ²¹⁴Bi unscattered photons, which is responsible for the r ~ 400 m AGRS spherical field of view



$$n(h) = A^{BEW} e^{\mu^{BEW} h} + B^{BEW} + n_{Rn}$$


- Atmospheric ²²²Rn vertical profile typically shows a diurnal mixing layer at s ~ 1-2 km
- A new theoretical model was developed to describe the n_{Rn} vertical profile on the basis of the ²²²Rn concentration distribution and of the mean free path of ²¹⁴Bi unscattered photons, which is responsible for the r ~ 400 m AGRS spherical field of view

Full reconstruction of the BEW count rate altitude profile

The theoretical model is applied for fitting the experimental count rate in the BEW

See Poster

"Atmospheric Radon in a marine

environment: a novel approach based on

AGRS" X4.307 17.30 - 19.00

- The **new model**, accounting for the a **homogeneous** ²²²Rn layer, provides a better fit compared to the ²²²Rn free standard model
- The mean ²²²Rn concentration a_{Rn} = (0.96± 0.07) Bq/m³ and mixing layer depth s = (1322 ± 22) m are in agreement with the literature

AGRS for measuring cosmic effective dose

 The AGRS detector 300 $+b^{CED^{EMS}}$ $= a^{C E D^{EMS}}$ EMSC E WC E Dn was calibrated for the 250 Ш ElectroMagnetic Ē 200 Shower component of the cosmic effective 150 dose (CED^{EMS}) by 100 means of the CARI-6P 50 and **EXPACS** dosimetry 0 software tools 10 20 30 40 50 60 70 80 0 Count rate CEW [cps] • On the basis of this **CED**^{EMS}

CARI-6P

EXPACS

a [μSv/y]

 -4.16 ± 0.59

 -1.67 ± 0.67

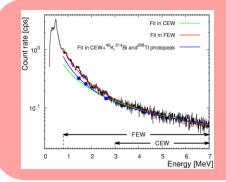
b [µSv/(y·cps)]

 3.26 ± 0.02

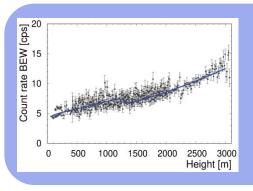
 3.62 ± 0.02

 r^2

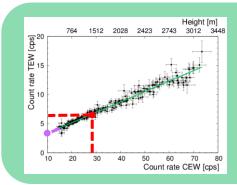
0.996


0.996

calibration, the AGRS
spectrometer can be
used a dosimeter


"CARI-6 program to calculate galactic cosmic radiation" Federal Aviation Administration (2014)

"Analytical model for estimating terrestrial cosmic ray fluxes nearly anytime and anywhere in the world: Extension of PARMA/EXPACS" T. Sato (2015)


Take away highlights

The **cosmic spectral shape** of a measured gamma spectrum was reconstructed by using as additional constraints to the high energy tail the cosmic count rates measured in the ⁴⁰K,²¹⁴Bi and ²⁰⁸Tl photopeaks

A **new model** accounting for the presence of **atmospheric** ²²²Rn provides a good reconstruction of the BEW count rate vertical profile, showing the **potential of offshore AGRS measurements in** ²²²Rn monitoring

Count rates **linear regression lines** allow for discriminating **cosmic** from **experimental setup radioactivity** background, assessing **background count rates** during AGRS regional surveys and determining **Minimum Detectable Abundances**

Baldoncini M., Albèri M., Bottardi C., Mantovani F., Minty B., Raptis K., Strati V. *Airborne gamma-ray spectroscopy for modeling cosmic radiation and effective dose in the lower atmosphere*. (2017) IEEE Transactions on Geoscience and Remote Sensing Baldoncini M., Albèri M., Bottardi C., Mantovani F., Minty B., Raptis K., Strati V. *Exploring atmospheric radon with airborne gamma-ray spectroscopy* (2017). Atmospheric Environment