Erosion of Earth's atmosphere by ion escape: observations, a consistent model, and implications to the atmospheric evolution

M. Yamauchi¹, A. Schillings^{1,2}, R. Slapak³, H. Nilsson¹, I. Dandouras³

- 1. IRF, Kiruna, Sweden
- 2. LTU, Kiruna, Sweden
- 3. EISCAT HQ, Kiruna, Sweden
- 4. IRAP, U. Toulouse/CNRS, Toulouse, France

Key Point

(1) **Slapak et al.** (Ann. Geo. 2017): O⁺ Loss Rate from the Earth for Kp < 7 : $F_{loss} \propto exp(0.45*Kp) \implies \int F_{loss} \approx 10^{18} \text{ kg} \approx \text{atmospheric O}_2$

(2) Yamauchi and Slapak (Ann. Geo. 2018):

(a) Mass loading of these O⁺ extracts solar wind kinetic energy:

 $\begin{array}{l} \Delta E \propto (m_0/m_H) \cdot (n_0/n_H) \sim substantial \\ \propto F_{loss} \cdot v_{SW}^{-2} \\ \mbox{where } F_{loss} \mbox{ is the total } O^+ \mbox{ flux into the solar wind.} \\ (b) \mbox{ Positive feedback between } \Delta E \mbox{ into the ionosphere and } O^+ \mbox{ energization by} \\ \Delta E \ \Longrightarrow \mbox{ non-linear Kp dependence} \end{array}$

(3) Schillings et al. (Ann. Geo. 2017): For large $Kp \ge 7+$ (ancient condition) : F_{loss} (and ΔE) >> prediction by exp(0.45*Kp)

\Rightarrow O⁺ escape can no longer be ignored in the evolution of the atmosphere

2

(1) O⁺ escape vs. Kp: Cluster/CIS

Cluster/CIS hot O⁺ obs. of direct escape

4

M. Yamauchi Kiruna, Sweden

(2) Feedback from escaping ions

- V_{O^+} increases while V_{H^+} decreases
 - ⇒ Mass loading
 - ⇒ inelastic momentum conservation
 - ⇒ Extraction of kinetic energy

(2a) Energy extraction by O^+ mass-loading $\neq 0$

(1) Momentum conservation in the –x direction:

$$\Delta P = (\rho + d\rho) \cdot (v + dv)^2 - \rho u^2 = 0$$

and dF_{loss} (O⁺ supply from –z) plays as dp $\Rightarrow d\rho/\rho \approx (dF_{loss}/dx) \cdot dx/\rho v \cdot S$

(2) "inelastic" mixing means $\Delta E = (\rho + d\rho) \cdot (v + dv)^3 / 2 - \rho u^3 / 2 < 0$ $\Rightarrow \Delta E \text{ (extracted energy)} \approx F_{loss} \cdot v_{sw}^2 / 4$

(3) Amount is substantial: $n_{O+}/n_{SW} \sim 0.01 \Rightarrow \rho_{O+}/\rho_{SW} \sim 0.16$ \Rightarrow extract 7% of kinetic energy E $\Rightarrow \Delta E \approx 10^{9-10}$ W to J_{//} through B

If "ionosphere" is connected to mass-loading region

If $\sum_{P} = \infty$, charges are canceled & E = 0If $\sum_{P} = 0$, charges cause E = -UxBIf $\sum_{P} = \text{finite}, E = \text{finite} \& I_{P} \cdot \sum_{P} = \text{finite} \propto \Delta E$

(2b) Combine with feedback to ion escape

Energy to ionosphere by mass-load:

 $\Delta E \propto F_{loss} \cdot v_{SW}^2$

Assume escape \propto energy loss in the ionosphere: $F_{loss} \propto \Delta E$

 \Rightarrow Positive feedback !

Add two empirical relations (1) Ion Loss Rate (Cluster): $F_{loss} \propto exp(0.45*Kp)$

(2) Kp and V_{SW} : V_{SW} \propto 135·(Kp+1.2)

 $\Rightarrow \Delta E \propto Kp^2 \cdot exp(0.45*Kp)$

(3) Non-linearity for Kp>7 example: Halloween event (2003-10-29) 29-Oct-2003 4000Number of datapoints 2003 entire 2003 29.10 3000 Flux after scaling to the ionosphere 2000 **Reference: 1-year** • data in the same 1000 region 2003-10-29 \Rightarrow higher than 0 extrapolation 12 8 10 14 16 Scaled outflow log₁₀ O⁺ [m⁻²s⁻¹]

Examined 6 "extreme" events

Dates	V _{sw} (km/s)	N _{sw} (cm⁻³)	Dst [nT]	Кр
2001-3-31	~ 720	38	-387	9-
2001-4-12	~ 720	4.4	-271	7+
2003-5-30	~ 810	52	-144	7+
2003-10-29	(2000 ?)		-350	9
2004-11-7	~ 700	90	-117	8
2004-11.10	~ 790	18	-259	9-

Shift of median flux (b) Northern hemisphere

The O⁺ outflow during major storms is 1 to 2 orders of magnitude higher than during less disturbed time

Summary and Conclusion

(1) Slapak et al. (2017): Ion Loss Rate from the Earth for Kp < 7 : $F_{loss} \propto exp(0.45*Kp) \implies \int F_{loss} \approx 10^{18} \text{ kg} \approx \text{atmospheric O}_2$

(2) *Yamauchi and Slapak* (2017): Extraction of Solar Wind kinetic energy by mass loading :

 $\Delta E \propto F_{loss} \cdot v_{SW}^2 \implies \Delta E \propto Kp^2 \cdot exp(0.45*Kp)$, for Kp < 7

(3) *Schillings et al*. (2017): However, for large Kp ≥ 7+ (condition of ancient time)

 F_{loss} (and ΔE) >> prediction by exp(0.45*Kp)

 \Rightarrow $\int F >> 10^{18}$ kg (atmospheric O₂ and N₂)

 \Rightarrow O⁺ escape can no longer be ignored in the evolution of the atmosphere

