

Figure 1: Study area, Weany sub-catchment of Burdekin River Catchment, Queensland Australia.

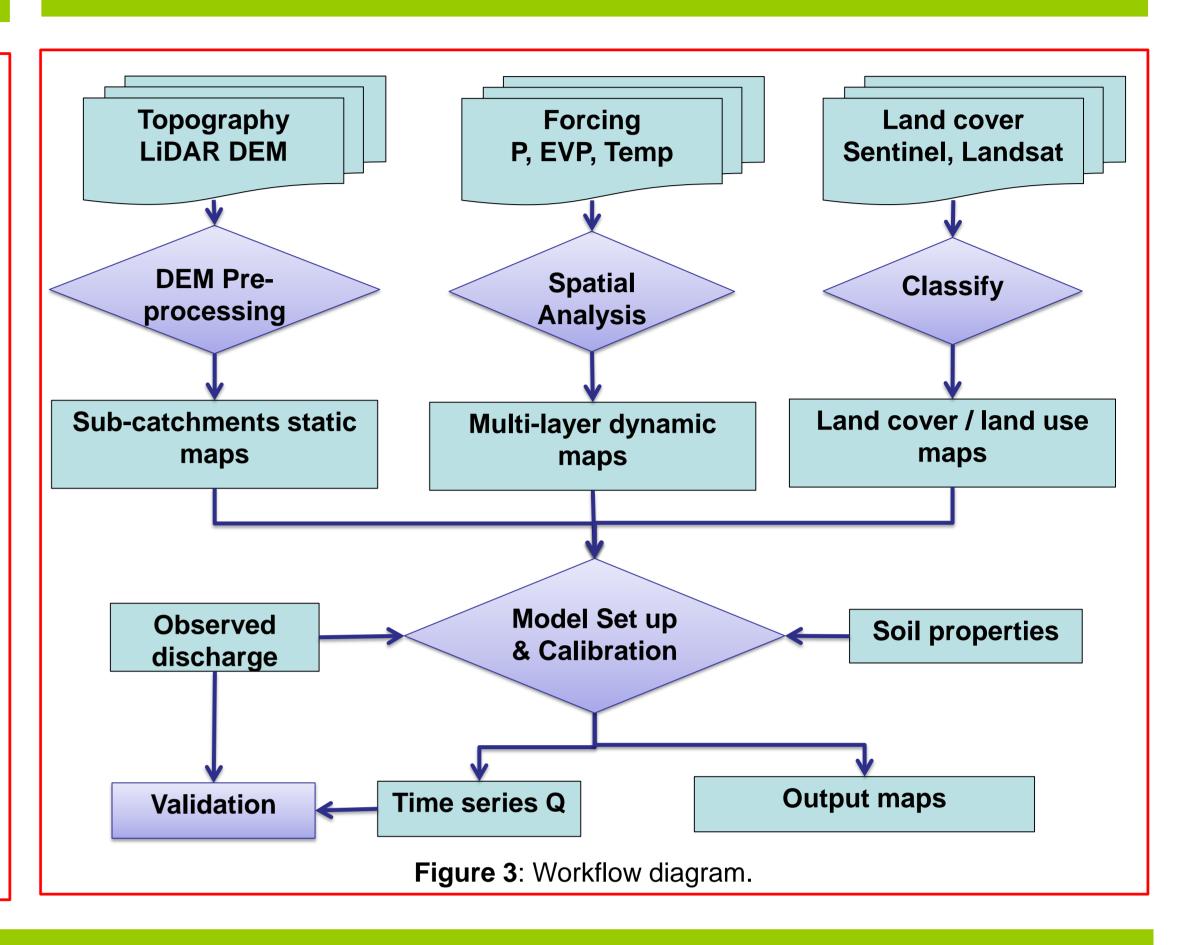
Distributed Modelling of Stormflow Generation: Assessing the Effect of Ground Cover

Ben Jarihani¹, Roy Sidle¹, Rebecca Bartley², Christian Roth² ¹ University of the Sunshine Coast, Australia, ²CSIRO Land and Water, Brisbane, Australia

(bjarihan@usc.edu.au)

Figure 5: Rainfall, discharge and calibration process of event # 33 – a moderate storm event

Processes


Interception is modelled using the Gash model (Gash, 1979 and Gash et al., 1995);

> The model uses potential evapotranspiration as input time series and derives the actual evaporation based on soil water content and vegetation type;

The soil is represented using a simple bucket model that assumes an exponential decay of the saturated conductivity (Ksat) with depth (M parameter);

Lateral subsurface flow is modelled using the Darcy equation. Soil depth is specified for different land-use types and

subsequently scaled using the Topographic Wetness Index; A sub-cell parameterization is present that allows a fraction of a cell to represent a compacted soil surface with reduced infiltration capacity. This is also used to represent the effects of urban areas; Surface runoff is modelled using a kinematic wave routine; The model can run with any time step. However, the model uses a simple explicit solution for most processes. As such, changing the time step may call for recalibration.

up	and c	alibra	tion.	1			
ak arge nin 's)			&(l	Sentinel &(Landsat) Image			
5		3.3		11/	′15/2	016	
31		8.3		12/	/11/2	015	
)6		10.6		12/	/05/2	016	
37		29.5		02/	/19/2	016	
5		40.2				800	
.2		56.4		12/	/04/2	800	
	Rur test test test test test Rai	02 03 04 05 06 07 08 n (mm	25/Feb 12:00	25/Feb 13:00	25/Feb 14:00	0 5 10 20 25 30 35 40 45 50	
						0	
	-Disch	narge (m3/s)			5	
						ט 10 ב	
	run02					3	
						05 Rainfall (
	run03_NRiv0.1N0.1						
	-rain	(11111)				25	
7/Jan 11:00 5	7/Jan 12:00	7/Jan 13:00	•	7/Jan 16:00	7/Jan 17:00	30	

Results

		Table 2: l	and cover sc	enarios an	nd related model paramet	ters		
Scenario	landcover	canopy gap fraction	KsatVer (mm/d)	М	max canopy storage (mm)	Ν	thetaS	Path fraction
С								
C1	0	1	360	2000	1	0.1	0.1	1
C2	25	0.75	480	1550	2	0.11	0.15	0.75
C3	50	0.5	600	1100	3	0.12	0.2	0.5
C4	75	0.25	720	650	4	0.13	0.25	0.25
C5	100	0	840	200	5	0.15	0.3	0

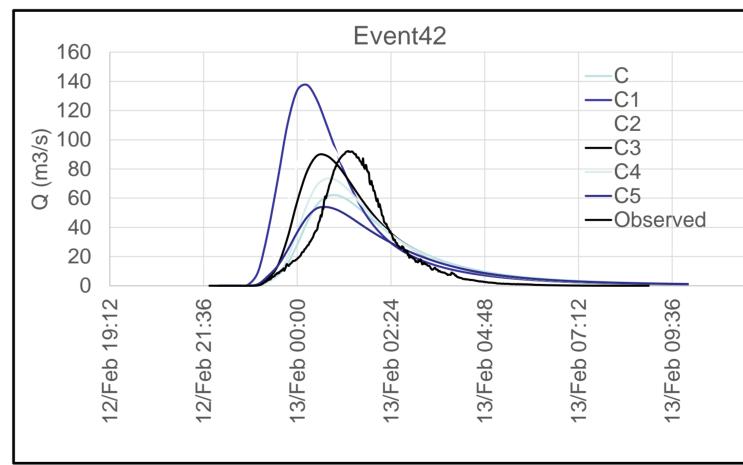


Figure 6: discharge of 5 tested land cover scenarios

Creek - the relationship between runoff ratio and ground cover is non-linear. - Remote sensing over estimates ground cover and consequently discharge peaks are underestimated. - The distributed Wflow model can be used to understand runoff generation processes in more detail throughout the catchment area.

References:

Wflow-sbm model documentation version 1.0.master 2017.1 accessible at http://wflow.readthedocs.io/en/2017.01/wflow_sbm.html Wflow rainfall runoff model public wiki page accessible at https://publicwiki.deltares.nl/display/OpenS/WFlow+rainfall-runoff+model Jaap Schellekens, Willem van Verseveld, Tanja Euser, Hessel Winsemius, Christophe Thiange, Laurène Bouaziz, Daniel Tollenaar, Sander de Vries, 2016. openstreams/wflow: 2016.03. doi:10.5281/zenodo.155389

Workflow Diagram

	5: Land d	over scen	arios an	alysis r	esuits	
	С	C1	C2	C3	C4	C5
runoff (mm)	54.33	87.06	75.09	66.45	58.06	49.
runoff ratio	0.43	0.70	0.60	0.53	0.46	0.
runoff ratio (obs)	0.40	0.40	0.40	0.40	0.40	0.
difference (%)	8	73	49	32	16	

Conclusions

- The results of the hydrological model indicate that streamflow is affected by land cover changes in Weany