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A linear dynamical systems algorithm for streamflow reconstruction 
reveals history of regime shifts in northern Thailand   

1. Introduction

Hung T.T. Nguyen and Stefano Galelli

Streamflow reconstruction is the study of catchment 
in the distant past, using statistical techniques 
to reconstruct streamflow from climate proxies 
(e.g., tree-rings). Since its inception in the 1970s, 
streamflow reconstruction has brought fought 
insights that were unattainable with instrumental 
records, such as better understanding of extreme 
events and long term streamflow variability. 

Most reconstruction studies use principal 
component linear regression, which establishes an 
empirical relationship between climate proxies u 
and streamflow y via the regression equation

where α, β are regression parameters and 
Equation (1) neglects catchment dynamics and its 
effects on streamflow generation; therefore, it may 
not fully capture important phenomena such as 
long-range dependence, complex flood generation 
mechanisms, or clustering of extreme events.

An alternative is to use water-balance-based 
methods. This approach, however, requires 
extensive hydrologic data that may be unavailable 
in developing countries.

3. Methodology 4. Results and Discussion 5. Conclusions
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Research Questions
•  How do we account for catchment dynamics 

without requiring more data?
•  Will a dynamic streamflow reconstruction be 

more accurate?
•  What insights can we gain with a dynamic 

model?
We propose a linear dynamical systems 
approach to answer these questions.

Key points
•  The linear dynamic model has higher accuracy 

than conventional linear regression. 
•  The state variable reveals regime-like behaviour 

in the catchment history.
•  The model can generate stochastic replicates of 

both streamflow and catchment state.

yt = α + βut + εt

xt+1 = Axt + But + wt

yt = Cxt +Dut + vt

wt ∼ N (0, Q)

vt ∼ N (0, R)

3.1. Linear dynamical systems
We model the catchment as a linear 
dynamical system (LDS) governed by 
equations (2) and (3):

2. Case Study

Pillar of Engineering Systems and Design, Singapore University of Technology and Design

Here, y and u are streamflow and climate 
proxy, as before. We introduce the hidden 
system state x, which indicates the 
catchment’s flow regime (i.e., whether it is 
wet or dry). Observe that linear regression 
is a subclass of the LDS model.

The system parameters θ = (A, B, C, 
D, Q, R) and state are learned with the 
Expectation-Maximization algorithm 
(Figure 2). The E-step fixes the system 
parameters and estimates the hidden 
states; the M-step fixes the state and 
estimates the parameters. EM iterates 
between E- and M-steps until convergence 
(Cheng and Sabes, 2006).
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4.1. Model performance
LDS performed much better 
than the benchmark (Figure 
4). Linear regression tended 
to overestimate streamflow 
when the catchment was 
dry and underestimate it 
when the catchment was 
wet while the LDS model 
matched observations better. 
This shows that information 
about the catchment state is 
beneficial.

The cross-validated 
performance scores of LDS 
are 45–497% better than 
linear regression (Figure 5), 
e.g., R2 increased from 0.54 
to 0.82 and coefficient of 
efficiency from 0.12 to 0.74.

4.2. Full reconstruction
LDS reveals a drier history 
of the Ping River than does 
linear regression (Figure 
6a). The reconstructed flow 
regime shows different 
patterns of regime shift 
over time (Figure 6b). 
Notably, the last century 
contains both the wettest 
period (including the 
wettest year) and the driest 
year. Our reconstruction 
is in agreement with the 
MADA with regards to 
the Asian megadroughts, 
but also complements it 
with information on local 
droughts (Cook et al, 2010).

4.3. Stochastic streamflow
Stochastic streamflow 
replicates are generated by 
sampling wt, vt and εt with 
historical climate input.

Figure 7 shows that 
LDS is a better stochastic 
streamflow generator. In 
linear regression, climate 
input only accounts for 54% 
of streamflow variability; 
hence, the noise process 
generates large and 
unrealistic deviations from 
the mean. In LDS, input and 
catchment state account for 
82% streamflow variation; 
thus, the LDS replicates 
resembles the reconstruction 
more closely.

We contribute a technique of applying the linear 
dynamical systems model and EM learning to 
streamflow reconstruction. Results reveal a history 
of regime shifts in the catchment with decadal to bi-
decadal droughts and pluvials in the paleo period, 
while highlighting that the instrumental period 
contains the wettest period and the driest year.

The model scores are notably higher than 
the conventional linear regression (45–497% 
improvement), suggesting that it is important to 
account for catchment dynamics. The model’s 
success is attributed to its two key advantages: 
it estimates the trajectory of the catchment state 
during the paleo and instrumental periods, and 
it accounts for the effect of both catchment state 
and climate proxies on the streamflow generation 
process. 

The LDS model also has several desirable 
features: (i) the reconstructed trajectory of the 
state variable provides more insights about 
the catchment’s history than the reconstructed 
streamflow alone, (ii) the learning algorithm is 
computationally efficient, and (iii) the model can be 
readily used as a stochastic streamflow generator. 

The LDS model can replace linear regression 
in future streamflow reconstruction studies. 
Most importantly, the model’s regime state, not 
available in conventional methods, may add value 
to downstream water resources management. 
Through the findings in this work, not only has 
the values of streamflow reconstruction been 
strengthened, but its potential applications have 
also been widened.
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(1)

We reconstruct 406 years of streamflow (1600–2005) for station P1 on the 
Ping River, Thailand. The Ping is a main tributary of the Chao Phraya 
Basin, home to 22 million people, including 8 million in Bangkok. 
The Ping River supplies water to the Bhumibol Reservoir, the largest 
reservoir in the basin, with an active capacity of 9.6 billion m3.

Our paleoclimate proxy is the Monsoon Asia Drought Atlas (MADA) 
(Cook et al, 2010), a gridded time series of the Palmer’s Drought Severity 
Index (PDSI) reconstructed over Asia from a rich tree-ring network. 
A similar gridded PDSI dataset was shown by Ho et al (2016) to be a 
reliable paleoclimate proxy. Figure 1 shows the MADA grid points used 
for reconstruction and its correlation with streamflow at P1.

We benchmark our reconstruction with a typical backward stepwise 
principal component linear regression similar to Woodhouse et al (2006).

3.2. Simultaneous learning-reconstruction
Typically, a paleoreconstruction problem 
is solved in two phases: learning and 
reconstruction. Learning involves building 
a regression model for the instrumental 
period. Reconstruction involves feeding 
the paleo period’s input into the regression 
model to obtain the paleo period’s 
streamflow (Figure 3a). This approach does 
not work with our LDS model. Because of 
the system dynamics, one must propagate 
the system state from past to present, which 
may cause a mismatch of system state 
where the two periods intersect (Figure 3b). 
To overcome this problem, we eliminate the 
paleo-instrumental delineation and perform 
learning-reconstruction simultaneously 
(Figure 3c). We achieve this by modifying 
the EM algorithm (see details in Nguyen 
and Galelli, 2018).

(3)

Figure 3. Motivation for simultaneous 
learning-reconstruction

Figure 4. Reconstruction results for the instrumental period

Figure 6. A reconstructed history of the Ping River

Figure 7. Stochastic streamflow replicates

Figure 2. The EM algorithm for linear 
dynamical systems

(2)
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Figure 5. Model performance in leave-10%-out cross validation

ε ∼ N (0, σ2).
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Figure 1. Map showing the study region with 
station P1 (red triangle) and nearby MADA 
grid points (coloured circles), together with 
the tree-ring sites used in the MADA.
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