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2.	Perfect	model	class	scenario
• Assumed	Ground	Truth	(GT)	in	same	model	class	as	

imperfect	models	(IMs)
• So	IMs	have	imperfect	model	parameters
• But	in	the	same	perfect	model	class
• Example: Lorenz	63	experiment	(L63)	below	[2]
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5.	QG3	Model
• Spectral	three-level	quasi-geostrophic	model	

simulating	winter-time	atmosphere	in	the	
Northern	hemisphere	(QG3),	from	[3]

• GT:	T42	resolution	model
• IMs:	T21	resolution	model	with	perturbed	

parameters
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1.	Supermodels	(SUMOs):	
interactive	ensemble	of	existing	models
• Proposal	to	improve	climate	modeling[2]

•Assumption:	models	are	good	but	imperfect
•Model	combination	for	improvement
•Alternative	to	conventional	noninteractive ensemble	
methods

• Supermodel	=	Ensemble	of	dynamically coupled	
models	

(This	poster)	SUMO	coupling	by		weighted	averaging

Individual	model	dynamics

• SUMO	couplings	need	to	be	optimized	
e.g.	by	minimizing	short	term	prediction	error	E
à Very	successful	in	simulations,	good	attractors[2]

• However:	perfect	model	class	scenario
• Unrealistic	assumption?
• What	are	the	consequences
• What	are	alternative	training	methods

Level-wise	spatial	distribution	of		standard	deviation	in	potential	vorticity.
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6.	CONCLUSIONS
• Nonlinear	dynamical	systems:	reducing	error	on	the	level	of	short	term	prediction	does	
not	necessarily	lead	to	improved	climate	properties

• Attractor	learning	may	needed	(Bayesian	optimization)
• The	cost	function	that	is	minimized	may	have	a	strong	influence	on	the	result
• Be	careful	with	perfect	model	scenario	simulations,	they	can	give	over-optimistic	results

Top	row,	black:	IMPERFECT	MODELS	-
L63	with	perturbed	parameters

Right,	black:	SUMO

Grey:	GROUND	TRUTH		-
L63	with	standard	parameters

SUMO(E)																				SUMO(W)																			SUMO(V)

3.	Imperfect	model	class	scenario
• GT	is	more	complex	than	IMs		(unresolved	scales)
• Example:	Chaotically	driven	L63,	see	below		
• Short	term	prediction	learning	àwrong	attractor
• Remedied	by	attractor	learning	

visible

hidden

Grey:	GROUND	TRUTH		-
Chaotically	driven	L63	

Black:	Imperfect	models:
L63	with	constant	forcing	-

Short	term	prediction	error	E				- cheap	to	compute

Attractor	errors	W and	V - expensive
requires	model	roll	out

Chaotically	driven	L63

Standard	L63

4.	Bayesian	optimization
• For	optimization	of	expensive	cost	functions
• Models	cost	function	as	well	uncertainty	

using	Gaussian	process	regression
• Selects	new	point	based	on	expected	improvement

from: Brochu, Eric, Vlad M. Cora, and Nando De Freitas. "A tutorial on Bayesian 
optimization of expensive cost functions, with application to active user modeling and 
hierarchical reinforcement learning." arXiv preprint arXiv:1012.2599 (2010).

SUMO	equations	for	potential	vorticity	(PV)

Differently	optimized	SUMOs

Quantity	of	interest (in	this	study) STD	of	PV

SUMOs	optimized	for	E and	U,	where

QG3	Model

Velocity	v and	stream	function	ψ are	calculated	from	the	PV	q by	a	
linear	transformation	that	is	different	for	each	model	µ
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Identical	color	coding	– except	off-set

Short	runs,	with	x
initialized	in	xgt at	
each	ti

After	model	roll	out,	mean	and	
covariances of	model	and	data	
are	compared


