
1. Introduction 

Effective design of groundwater observation networks, requires 

accurate and robust hydraulic head estimates at multiple locations in an 

aquifer. In most groundwater applications, however, the spatial extent 

of geologic formations is generally assessed based on subjective 

geologic interpretations in the light of geologic maps. Hence, 

parameterizing the uncertainty in hydraulic head estimation constitutes 

an important topic for engineering applications.  
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In this work, we study how the statistical structure of hydraulic 

conductivity fields affects the distribution of the absolute error in 

hydraulic head estimates at unobserved locations in an aquifer. The 

latter is calculated as a function of: a) the characteristic scale lc of 

geologic formations, b) the standardized distance from the nearest 

measuring locations (i.e. inter-borehole distance), and c) the small 

scale variability inside each formation.  

 

  

Figure 7: Mean value, 75%- and 90%- quantiles of the standardized absolute 

error |e(u)| as a function of the dependence ratio r = L/lc, for CVK = 2, and 

standardized distances u = x/L = 0.15, and 0.5. The corresponding curves have 

been obtained by ensemble averaging the results of 10000 Monte Carlo 

simulations, using models P-B (red lines), LNM (blue lines), MF (black lines) 

and expFGN (pink lines).  

Figure 6: Distribution of the standardized absolute error |e(u)|, for CVK = 2, 

dependence ratio r = L/lc = 0.25, and 1024, and standardized distances u = x/L = 

0.15, and 0.5. The corresponding curves have been obtained by ensemble 

averaging the results of 10000 Monte Carlo simulations, using models P-B (red 

lines), LNM (blue lines), MF (black lines) and expFGN (pink lines).  

4. Results – Conclusions 

2. Error distribution in hydraulic head estimation 

Considering that hydraulic conductivity is unknown along the aquifer 

(see Figure 1), we use 4 stationary stochastic models to simulate 

scaling and non-scaling representations of hydraulic conductivity 

fields. Subsequently, based on the dimensional analysis presented in 

Section 2, we approximate the distribution of the standardized absolute 

error |e(u)|, using Monte Carlo simulations.  

o Each stochastic model provides an alternative approximation to 

the dependence structure of the hydraulic conductivity field inside 

an independent pulse.  

A. Pulse based model 

B. Lognormal process with latent Markovian structure (LNM) 

D. Lognormal process with multifractal structure (MF)  

C. Lognormal process with latent Fractional Gaussian Noise (FGN) 

statistical structure 

3. Statistical structure of hydraulic conductivity fields 

 Modeling hydraulic conductivities as a sequence of r =L/lc 

independent pulses of constant length lc; see Figure 4. 

 Hydraulic conductivity is spatially uniform (i.e. constant) inside 

each independent pulse  maximization of short-range 

dependencies 

 Hydraulic conductivity is approximated by a mean-1 

exponentiated discrete Markovian process, with coefficient of 

variation CVK. The equivalent pulse length lc  is defined as the 

distance where the autocorrelation function equals 0.05 (i.e. 5%). 

 

Hydraulic conductivity is described by the stationary stochastic self-

similar process: 

spatial dependencies also beyond the inter-borehole distance L 

Kl =d AsKsl 

where Kl is the spatially averaged hydraulic conductivity at scale l  < lc 

(i.e. s = lc/l > 1), =d denotes equality in all finite dimensional 

distributions, and As is a strictly positive (As > 0 ), log-infinitely 

divisible unit mean random variable. 

 The hydraulic conductivity field is modeled as an exponentiated 

Fractional Gaussian Noise (FGN) 

focus solely on long-range dependencies 
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Figure 5: Schematic illustration 

of the theoretical autocorrelation 

functions of: (a) a pulse based 

(P-B) model (red curve), (b) a 

lognormal process with latent  

Markovian autocorrelation 

structure (LNM) (blue curve), 

and (c) an exponentiated 

Fractional Gaussian Noise 

(expFGN) process (pink curve). 

 For inter-borehole distances L ≤ lc (i.e. the characteristic linear scale 

of geologic formations in the study region), the standardized 

absolute error |e(u)| is underestimated by the pulse based (P-B) 

model (red curve). 

 For r = rmax (complete independence), all four stationary stochastic 

models produce same results for the distribution of |e(u)|. 

In the case when the hydraulic conductivities Ki, i = 1, 2, …, rmax are 

known, one can calculate the exact hydraulic head h(x) at any location 

x in the direction of the flow (see red broken line in Figure 1), as:  

Figure 1: Schematic representation 

of the calculated (exact; red broken 

line) and linearly interpolated (green 

line) hydraulic heads in a 1D 

confined aquifer, formed by rmax 

successive hydraulic conductivity 

units of equal length.  

Suppose a one dimensional (1D) confined aquifer of total length L, 

formed by rmax successive hydraulic conductivity units of equal length 

l0 = L/rmax; see Figure 1 below. 

It follows from statistical symmetry (see e.g. Figure 2), and simple 

geometric interpretations, that: 

• The cumulative distribution function (CDF) of the standardized 

absolute error |e(u)| satisfies (see Figure 2 above): 
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where s = int(x/l0) is the integer part of the ratio x/l0, h0 = h(x = 0),  hL = 

h(x = L), and: 
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is the groundwater discharge per unit width of the aquifer (i.e. 

perpendicular to the direction of the flow). 

In the lack of hydraulic conductivity information, one can obtain an 

estimate ĥ(x) of the standardized hydraulic head h(x) by linearly 

interpolating between the two measuring locations: 

A. Dimensional analysis for 1D flow in confined aquifers 

  F|e(u)| = F|e(1-u)| ,  u = x/L  [0, ½] 

• Due to the geometry of the problem under consideration, for any 

location u = x/L ∈ [0, ½] along the aquifer, |e(u)| is described by a 

two component distribution (see Figure 3): 

Component 1:   0 ≤ |e1(u)|  u 

Component 2:   u < |e2(u)|  1 - u 

for any u = x/L ∈ [0, ½]  

Figure 3: Schematic 

illustration of the 

components of the 

complementary 

cumulative distribution 

function (CCDF) of 

the standardized 

absolute error |e(u)|. 
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Component 1    
0 ≤ |e1(u)|  u 

Component 2    
u ≤ |e2(u)|  1-u 

max|e1(u) |= u 
max|e2(u) |= 1- u 

Under this setting, one may define the standardized absolute error 

|e(u)| as: 

|e(u)| = 






h(u) - h

^
(u)

 h0 - hL
 ,  u = x/L  [0, 1] 

B. Theoretical attributes of the distribution of |e(u)|   

Independent of the geologic structure of the aquifer (see Figure 1 

above), the standardized absolute error |e(u)| exhibits statistical 

symmetry; see Figure 2. 

Figure 2: Schematic illustration of statistical symmetry in the study problem. 

h'(u) = (h(u) – hL)/(h0 – hL) is the standardized hydraulic head.   
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Figure 4: Pulse based representation of hydraulic conductivities along a 1D 

confined aquifer. Each pulse exhibits internal spatial variability. 

Key parameters affecting the distribution of |e(u)|: 

• u = x/L: standardized distance from the nearest measuring location  

(due to statistical symmetry; see Section 2.B and Figure 2)  

• Dependence ratio r = L/lc: a measure for 

the extent of apparent (i.e. observed) 

middle-scale heterogeneities in the aquifer.  
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 For L ≤ lc, dependencies at multiple scales dominate the distribution 

of |e(u)|.   

 For L > lc, |e(u)| decreases fast with increasing dependence ratio  

r = L/Lc.   At the limit as r → ∞, the medium becomes 

statistically uniform 
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• K follows a mean-1 lognormal distribution with coefficient of 

variation CVK  (i.e. K ~ LN (1, CVK
2)). 




