High-resolution precipitation reanalysis over France through offline data assimilation in a downscaled ensemble meteorological reconstruction

This study considers an "offline" data assimilation method using the Ensemble Kalman Filter to build a precipitation reanalysis over France. The method is here applied for reconstructing the 2009-2012 period, using past observation density of 1871, 1900 and 1950 . The methodology allows taking two main features of precipitation into account: (1) an anisotropic localization matrix based on the climatological background information, (2) a Gaussian transformation applied to daily recipitation. Results show a reduced error and a reduced uncertainty compared to background reconstructions, even with few observations, thus demonstrating the dded value of data assimilation.

Research question

How to produce a 150 -year high-resolution precipitation reanalysis over France ?
\rightarrow Through data assimilation of observations of precipitation into with available downscaled ensemble
\rightarrow This work:
Evaluation of the methodology on the 2009-2012 period
Sensitivity of the analysis to the network density
Data

Data available over the $1871-2012$ perio

- Observations : Daily precipitation over France for the 1871-2012 period with associated easurement metadata

Safran [Vidal et al., 2010] : Deterministic reanalysis of meteorological variables / Daily on the 1958 -2012 period / $8 \times 8 \mathrm{~km}$ grid over France (8602 cells)
\checkmark SCOPE Climate [Caillouet et al., 2016, 2017] : Ensemble reconstructions (25 members) of meteorological variables / Daily on the 1871-2012 period / $8 \times 8 \mathrm{~km}$ grid over France (8602 cells)
Methods
Offline data assimilation scheme

No model / Analysis step of the Ensemble Kalman Filter [Evensen, 2003] Observation error covariance matrix: diagonal with $\sigma_{o b s}$ defined by metadata Background error covariance matrix: defined by the 25 members of SCOPE Climate
Gaussian anamorphosis

Gaussian transformation [Lien et al., 2013] defined on each cell with SCOPE Climate using 1958-2008 period as reference
Allows a more Gaussian distribution except for non-null precipitation

Method

- Localization of background error covariance matrix

Construction of localization matrix based on spatial correlation of SCOPE Climate over the 1958-2008 period
Localization matrix is strongly anisotropic

- Set-up and Validation

Stations used for simulating different densities and stations used for validation. The red square highlights the case study cell.
Daily reanalysis over the 2009-2012 period
Density simulated as of 1871,1900 and 1950 / A set of 783 stations is used for validation Validation using the Continuous Ranked Probability Score (CRPS) between each perturbed observation and the corresponding grid cell value from SCOPE Climate / the reanalysis
(1) Results: added value of localization \& anamorphosis

Etror as a function of density and uses of localization and anamorphosis.

- Localization

Without: error of the reanalysis higher than for the background With: error of the reanalysis lower than for the background
Anamorehosis: overall improvement with anamorphosis
Localization / Anamorphosis: Improvement strongly dependent on the density ${ }^{2}$ CNR (Compagnie Nationale du Rhône), Lyon, France alexandre.devers@irstea.fr
(2) Results: extreme event of November 2011

Intense rainfall event that led to 14 casualties in the South of France [MunichRE, 2012]

- Temporal perspective

Daily precipitation time series for the case study cell during the extreme event of November 2011. Reduction of uncertainty / Improves autocorrelation and coherence between members Improvement strongly dependent on the density

- Spatial perspectiv

$$
\underbrace{\substack{\text { SCOPE } \\ \text { Cole }}}_{\text {Climate }}
$$

2011.

- High values (South-East) / small precipitation (West) well reproduced Smoother small-scale pattern than Safran

Future work

Meteorological reanalysis of the full 1871-2012 period for both temperature and precipitation Hydrological modeling over France for the 1871-2012 period using the meteorological reanalysis produced for improving current hydrological reconstructions SCOPE Hydro [Caillouet et al., 2017]

References

$$
\begin{aligned}
& \text { Callouet, L. } \mathrm{V}
\end{aligned}
$$

