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Abstract Geomagnetic Field Asymmetries at lonospheric Altitude CHAMP Accelerometer Neutral Wind Measurements

| B | at 400 km alfitude (IGRF only) | B1 at 400 km alfitude (IGRF only) The Challenging Minisatellite Payload (CHAMP), which is managed by the GFZ German
) Centre of Geosciences in Potsdam, was launched in summer 2000 into a near-circular
near-polar orbit at ~460 km with an inclination of ~87.3°. During the years 2002 & 2003,
its orbital altitude had decayed to about 400 km. One key scientific instrument on board
CHAMP is a triaxial accelerometer. From the air drag observations, thermospheric mass

Disturbances in the solar wind and interplanetary magnetic field (IMF) affect the Earth’s
high-latitude thermosphere and ionosphere via coupling with the magnetosphere. Recent ol
observations have shown that the upper thermospheric and ionospheric response to solar
wind/IMF dependent drivers of the M-I-T system can be very dissimilar in the Northern (NH)
and Southern Hemisphere (SH). Statistical studies of both ground- and satellite-based _ _ _ _ _
observations show hemispheric differences in the average high-latitude electric field patterns, A =V NI N ,. AR density and cross-track neutral wind can be obtained using the methodology described
assoclated with magnetospheric convection, as well as hemispheric differences in ion drift Pl AR T AN i Ll Ly by Doornbos et al., 2010.

and neutral wind circulation patterns. The cross-polar neutral wind and ion drift velocities are A SRS e - Q——

generally larger in the NH than the SH, and the hemispheric difference shows a semi-diurnal Iy o] S| | et
variation. The vorticity of the upper thermospheric horizontal wind is also larger in the NH than G N VA Qo R et

In the SH, with larger differences for higher solar activity. In contrast, the spatial variance of
the neutral wind is considerably larger in the SH polar region. These hemispheric differences
can be explained at least to some extent by asymmetries in the Earth’s magnetic field, both in
magnetic flux density and in the offset between the geographic and invariant magnetic poles.
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Fig. 6: Average thermospheric wind pattern at
~400 km altitude over the polar region of the NH
and the SH obtained from CHAMP accelerometer
measurements over the whole years of 2002-2003.
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Fig. 3: Color coded maps of magnetic field strength at 400 km height for NH and SH in circular geographic coordinates around the poles with the color scale on the bottom right. The neutral wind vorticity patterns (radial compo-
nent) on the right hand side are derived from the

_ _ The outer borders are at 50° geographic latitude; the longitudes are labeled near the 70° parallel. The magnetic field in the NH is fairly homogeneous over large regions of the average neutral wind pattern on the left side. Neda-
The Electron Drift Instrument (ED|) measures the drift of a weak beam of test electrons that, polar cap with magnetic field values ranging from around 40 pT to 50 uT. The magnetic field in the SH is characterized by larger gradients and field values ranging from 24 uT five vgrticity values (rgd to yellow) indicate a C|ng_
- - - - - - - -, - to 54 uT. The dipole axis orientation (geomagnetic poles) are indicated with dark-blue asterisks and the magnetic poles (dip pole positions) with light-blue crosses. The green wise, positive (green to blue) a counterclockwise
When em|tted In Cer_ta"_] d|reCt|OnS, retUIjn to_the Spacecraﬁ after one gyratlon- ThIS dl‘lft IS contour lines show geomagnetic parallels of altitude-adjusted corrected geomagnetic coordinates (AACGM). circulation._Th_e minimum and maximum vorticity
related to the electric field and the gradient in the magnetic field. values are indicated at the bottom left side of the
right panels (Forster et al, 2008, 2017).

Numerical simulations with the CMIT model have recently demonstrated that these differences can be

Subject to certain assumptions (equipotentiality along field lines, quasi-static conditions) the ; Vel s , _
explained at least to some extent by asymmetries in the Earth’s magnetic field, both in magnetic flux

average magnetospheric electric potential distribution for various IMF & solar wind conditions

have been derived and mapped down to the high-latitude ionosphere of both NH & SH (Fig.1). [ dénsity and in the oifset between the geographic and invariant magnetic poles in the two hemispheres iy o O e o
| | | | | | [FOrster & Cnossen, 2013]. The effects of this magnetic field asymmetry on the high-latitude thermo-
Sector71.sz+/BL)J/:227kV Secto1r 20 BZ+U—1 " Sector 11.ZBZ+/BK-I_- " Sector 71.sz+/BL)J/: . Secto1r 20 BZ+U—1 " Sector 11.sz+/BKf2 " . . . . . Sector 7, Bz+/By- Sectoﬁ B: Bz+ Sector 11: f2+fBY+ Sector 7, Bz+/By- Sectoq B:BZ + Sector 11: fz +/By+
g sphere and ionosphere have to be investigated more systematically. In particular, the dependence on
m season, IMF conditions, and solar activity level were studied by Cnhossen & Forster, 2016, using CHAMP
Nee) ap, pe o 18 oo observations (see Fig. 4) and further numerical simulations. The hemispheric asymmetries constitute a

certain aspect of the Earth’s response to space weather as it concerns the dynamics of the high-latitude
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plasma convection, the neutral wind dynamics, and the mass density in the upper atmosphere. Beside > <t -

Increasingly sophisticated observations by ground-based networks and satellite missions, global R s e L e
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Fig. 1: lonospheric convection patterns in the NH based on Cluster EDI observations of more than a solar cycle [see Forster & Haaland, 400 - - Fig. 7: Average thermospheric neutral wind vorticity patterns in the NH (left side) and the SH (right), sorted for 8 distinct sectors of
2015]. The data are sorted with respect to 8 different orientations of the IMF. Potential values are color-coded according to the color bar in the i ] Northern Hemisphere Southern Hemisphere IMF orientation as it was done for the ionospheric E x B drift pattern in Figure 1. Each sector comprise hence 45 deg of IMF clock angle
middle. Contour lines are drawn for every 3 kV. The minimum and maximum potential for the main cells of each IMF direction is indicated at - centered 91-day intervals P P range centered around the direction indicated on top of each panel.
the bottom, and the total difference (cross polar cap potential, CPCP) is given in the upper right of each individual panel. <10 ] I B T 1 L PR
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