

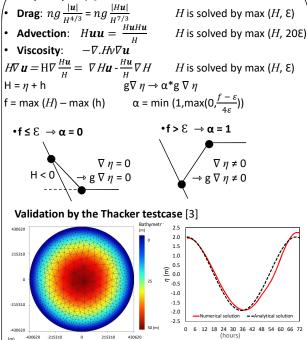
A new wetting – drying algorithm integrated in SLIM, with an application to the Tonle Sap lake, Mekong

H.A. Le^{1,2}, V.X.H. Dang², J. Lambrechts¹, S. Ortleb³, V. Vallaeys¹, D. Vincent¹, N. Gratiot², S. Soares-Frazao¹, E. Deleersnijder^{1,4}

Université catholique de Louvain (UCL), Belgium,
Universität Kassel, Germany,

(2) Asian Research Center on Water (CARE-Rescif), Vietnam,(4) Delft University of Technology, (TUD) The Netherlands

EGU2018 - 8100



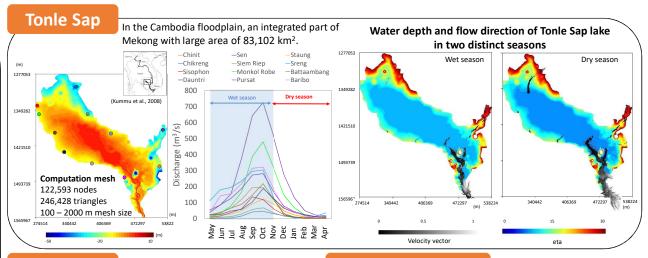
Introduction

- Numerical simulation of inundation and drying processes of floodplains is a challenge for hydrodynamic models,
- Classical approaches for Wetting and Drying designed for explicit schemes are time-consuming,
- New Wetting-Drying (W-D) algorithm with implicit timestepping is presented,
- Local mass conservation and efficiency at rapid transitions are verified,
- Validation using analytical and field test cases.

Wetting – Drying algorithm

The principles [2]

Computed mesh with 2412 Evolution of the free triangles, size of 10 - 100 km, $\eta_o = 2$ m & h = 50 m Center with $\mathcal{E} = 0.01$ m The free surface evolution by the numerical model is


very close to the analytical solution.

The Second generation Louvain-la-Neuve Ice-ocean Model (SLIM) [1]

- It solves the 2D depth averaged shallow water equations with the following features:
- unstructured mesh,
- discontinuous Galerkin Finite Element Method,
- implicit Runge-Kutta temporal scheme.
- Conservation form of the shallow-water equations:

$$\frac{\partial H}{\partial t} + \nabla (H\boldsymbol{u}) = 0$$

$$\frac{\partial H\boldsymbol{u}}{\partial t} + \nabla \cdot \frac{H\boldsymbol{u}H\boldsymbol{u}}{H} + g\nabla \frac{|H|H}{2} + \frac{ng}{H^{7/3}} |H\boldsymbol{u}| H\boldsymbol{u} + f\boldsymbol{e}_z \times H\boldsymbol{u} - \nabla \cdot (H\nu\nabla\boldsymbol{u}) = gH\nabla h$$

Conclusions

- The new W-D algorithm is well integrated in the SLIM model,
- By the Thacker testcase, it shows the well-balancing property and rapid transition of W-D interfaces in implicit scheme,
- During a year, the Tonle Sap experiences significant water level fluctuations and large variations of the flooded area,
- The simulation results are investigated for two flow seasons:
- In wet season, water flows from Mekong river to Tonle Sap,
- In dry season, water flow reverses.
- Future work:
- Extension to higher order elements,
- Applying to a larger domain of Cambodia floodplain and Mekong Delta.

Acknowledgements

The PhD fellowship of H.A Le is provided by the Université catholique de Louvain, Belgium. The research has been conducted under the framework of CARE-Rescif initiative with grant number Tc-TTC-2017-08. Computational resources have been provided by the Consortium des Équipements de Calcul Intensif (CÉCI), funded by the Fonds de la Recherche Scientifique de Belgique (F.R.S.-FNRS) under Grant No.2.5020.11.

References

[1] www.climate.be/slim

[2] Vater, S., Beisiegel, N., & Behrens, J. (2015). A limiter-based well-balanced discontinuous Galerkin method for shallow-water flows with wetting and drying: One-dimensional case. Advances in Water Resources, 85, 1-13.

[3] Thacker, W. C. (1981). Some exact solutions to the nonlinear shallow-water wave equations. *Journal of Fluid Mechanics*, 107, 499-508.

[4] Kummu, M., & Sarkkula, J. (2008). Impact of the Mekong River flow alteration on the Tonle Sap flood pulse. AMBIO: A Journal of the Human Environment, 37(3), 185-192.