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Reverse convection effects on PC indices Fig. 4.
Fig. 3. (a) Reverse convection case, red point ..o
F4, (AFprp; <0) Is included Iin the regression. (b) so b
Regression based on forward convection cases fz I
(AFpro; >0) only. Note larger slope and more so |
negative intercept in (a) compared to (b). (From =9

Abstract.

PC index basics.

The assumed relation between polar cap horizontal
magnetic field variations projected to an “optimal direction”,
considered to be perpendicular to the DP2 transpolar
plasma flow, and the Kan and Lee (1979) merging electric
field (Em = Vg * B * sin?(42)) has the form:
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With IMF B, strong and positive (northward), strong sunward convection
may develop In the central polar cap with return flows poleward of the
usual auroral oval (NBZ conditions). The NBZ sunward convection
maximises close to local noon at latitudes between the cusp and the
magnetic pole (e.g., Stauning et al, 2002). In addition to depending on the
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strength of IMF B,, the reverse convection Intensities relate to the AFpros=a*Eu+ f (1) Stauning, 2013) o
lonospheric conditions, in particular, the conductivity varying with local time, \here ¢ is the “slope” (e.g. in units of nT/(mV/m)), while o e Roverse convecton (Fyincluded sz Reverse convecton (4) ot nched 2 © N
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From MAGSAT and drsted satellites (Stauning, 2002), the horizontal AFpro, and Ey | | _sol i
magnetic vectors were measured at positions covering the northern as well Reverse convection properties at different locations The effects from.the varying rellatlve amqunt of 0T )
as the southern polar caps. The internal field as well as the ring current Figs. 2a-c display reverse convection intensities at Thule oo, oo, convection samples included in the ——72op
contributions were subtracted from the measured values, which were then regression to derive slope and intercept is seen 7 AT Fea T AR amr Ay don JOL T ASe” see olr v oec T

(Qaanaaq) and Resolute Bay in the norhern polar cap, and
Vostok and Concordia Dome C Iin the southern polar cap.
Reverse convection intensities are measured through the
number of hours with AFp,4;<-50 nT.

Thule, Resolute and Vostok are all close to the latitude of

In Fig. 4. The OMNI version has the largest
slopes and also the most negative intercept
values taking into account that the QDC is not
iIncluded in the quiet reference level (QL).

sorted within narrow bins of seasonal, solar wind, and Interplanetary
magnetic field (IMF) conditions. With bi-variate interpolation (Akima, 1978),

the result for the "Z3SS” case (-10<IMF By<+10, -3<IMF B,<+3, +5<IMF
B_<+10 nT, southern summer) is displayed in Fig. 1.

In Fig. 4 there Is a section for all months of the year. Within each monthly section
the display presents the average daily variation in slope (upper field) and
Intercept (lower field).
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Ground observations of NBZ conditions

At groundbased magnetic observations the NBZ conditions imply negative
values of the magnetic variations when projected to the “optimum direction™
considered to be perpendicular to the dominant DP2 forward convection =
direction. The effects are seen by comparing four widely used PC index ...,
versions: OMNI (Vennerstrgm, 1991), AARI (Troshichev et al., 2006), IAGA-

endorsed (Troshichev 2011), and DMI (Stauning, 2016).

OMNI  1977-1980
AARI 1998-2001
IAGA 1997-2009
DMI 1997-2009

Cycle average

BL: Base Level. QDC: Quiet Day Curve (Quiet daily variation not related to E, )
QDC* : based on running 30 days quiet samples (Janzhura & Troshichev, 2008) _.....

Peak of cycle
Peak of cycle

Frequent BL, No QDC

Frequent BL and QDC*

Average BL and QDC**
______ Excluded ___________BLand QDC*™

QDC** : running 30 days quiet samples + solar wind sector contribution
(Janzhura & Troshichev, 2011)
QDC***: 40 days solar rotation weighted quiet samples (Stauning, 2011)
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Fig. 2d. Dome C
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Exgr = En 2+ 2p/(2p + 2,)
Using E,x Instead of E,, In the displays removes most of the saturation trend in the DMI
) version and makes the average samples closely approach the dashed line of equality. For
the other versions, the remaining amount of saturation is mainly caused by the effects of
reverse convection events on the calibration parameters. The "OMNI” version
(Vennerstrgm, 1991) performs worst. The epoch of data (1977-1980) used for derivation
of calibration parameters in this version has the highest relative amount of reverse
convection cases. The "AARI” and "IAGA” versions perform in-between.
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Conclusions
- The NBZ reverse convection samples, when included in the regression calculations,

) transfer their narrow distributions with location within the polar cap, season, and local time
May-Aug § sunmars / to the derived calibration parameters and further onward to the PC indices.

- For summer daytime samples, the 50% saturation level is reached at E,,=6.0 mV/m for

1 [the OMNI version, 9.7 mV/m for the AARI, 12.5 mV/m for the IAGA, and 16.8 mV/m for the
1 |DMI version. The differences in saturation properties mainly relate to the relative amount
of reverse convection samples in the data base used for parameter calculations.

- The calculation methods used for the IAGA-endorsed version should be modified to omit
reverse convection samples from the calculations of calibration parameters.




