Vertical wind response to increased geomagnetic activity derived from GOCE linear and angular accelerations

T. Visser (t.visser-1@tudelft.nl), E.N. Doornbos, C.C. de Visser, P.N.A.M. Visser Delft University of Technology EGU session ST3.5/EMRP4.33/G4.4, Vienna, Austria; 9 April 2018

Correlation between the two sets

- Storm of April 5, 2010

ŤUDelft

Correlation between the two sets - high-pass

- Storm of April 5, 2010

ŤUDelft

Vertical wind from forces

TUDelft

Vertical wind from forces - corrected for smoothed daily means

Dependence on Kp – North Pole

Dependence on Kp – South Pole

Storm April 2010 - FAC

Storm April 2010 - Vertical wind

Storm April 2010 - Density

Storm April 2010 - Horizontal wind

Storm April 5, 2010 - Zoomed in

TUDelft

Conclusions

- GOCE: a space weather mission (Poster X4.266, Doornbos et al.);
- Vertical wind peaks verified;
- Clear vertical wind response to geomagnetic activity;
- Waves propagate towards the magnetic poles.

Conclusions

- GOCE: a space weather mission (Poster X4.266, Doornbos et al.);
- Vertical wind peaks verified;
- Clear vertical wind response to geomagnetic activity;
- Waves propagate towards the magnetic poles.

Future work

- Reprocessing GOCE data;
- Further improvement of the force/torque models;
- Validation with other vertical wind data sets.

Plots generated using M_Map and matlab2tikz.

EXTRA SLIDES

Storm April 5, 2010

ŤUDelft

Storm April 5, 2010 - Zoomed in

10 / 10

Dependence on Kp – North Pole

Dependence on Kp – South Pole

Storm August 2011 – FAC

Storm August 2011 - Vertical wind

Storm August 2011 - Density

Storm August 2011 - Horizontal wind

Storm August 2011

TUDelft

TUDelft

Storm October 2012 - Vertical wind

TUDelft

Date [dd/mm]

10 / 10

Storm October 2012 - Density

Storm October 2012 - Horizontal wind

Storm June 2013 - FAC

Storm June 2013 – Vertical wind

Storm June 2013 - Density

Storm June 2013 - Horizontal wind

Storm June 2013

ŤUDelft

Tohoku Earthquake – First pass

Tohoku Earthquake – Second pass

Tohoku Earthquake – Third pass

Quiet local winter, dusk – North Pole

TUDelft