AS5.3/GI2.11 Advanced Spectroscopic Measurement Techniques for Atmospheric Science (co-organized) (co-organized) |
Convener: Weidong Chen | Co-Conveners: Katherine Manfred , Dean Venables |
The instrumentation and its development play a key role in the advance in research, which makes it possible to offer to the researchers state-of-the-art tools to address scientific "open questions" and to open new fields of research leading to new discoveries.
Since the last decade, atmospheric environmental monitoring has benefited from the development of novel spectroscopic measurement techniques owing to the significant breakthroughs in photonic technology from the UV to the THz domain, which allows opening up new research avenues for observation of spatial and long-term trends in key atmospheric precursors, improving our understanding of tropospheric chemical processes and trends that affect regional air quality and global climate change. Extensive development of spectroscopic instruments for sensing the atmosphere continues to be carried out to improve their performance and functionality, and to reduce their size and cost.
This proposed focus session entitled "Advanced Spectroscopic Measurement Techniques for Atmospheric Science" addresses the latest developments and advances in a broad range of photonic instrumentation, optoelectronic devices and technologies, and also their integration for a variety of atmospheric applications. The objective is to provide an opportunity to get a broad overview of the current state-of-the-art and future prospects in photonic instrumental development for atmospheric sensing. It provides an interdisciplinary forum to enhance interactions between experimentalists, atmospheric scientists, development engineers, as well as R&D and analytical equipment companies to define the needs of the atmospheric scientists to address current atmospheric science issues, and coordinate these needs with the current capabilities of spectroscopic measurement techniques.
Topics for presentation and discussion will include but not be limited to: cavity-enhanced spectroscopy including IBBCEAS, ICOS, CRDS, UAV- or balloon-based measurement techniques, heterodyne radiometry, and aerosol spectroscopy ....; and their applications to in situ photonic metrology (concentration, vertical concentration profile, isotopes, flux, ...) of atmospheric aerosol, radicals & trace gases (HOx, RO2, NO3, HONO, NOx, greenhouse gases, halogens, CH2O, VOCs, BVOCs, light hydrocarbons, ....) in field observation, geological exploration, prospecting and survey, intensive campaigns and smog chamber study.