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Nighttime turbulence at InSight landing site through APSS observations
and MRAMS mesoscale modeling
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In this study the Mars Regional Atmospheric Modeling System (hereafter MRAMS [Rafkin et al. 2001]) has
been applied to the landing site (~4.5°N, 136°E in Elysium Planitia) of the InSight mission, that carries onboard
the APSS (Auxiliary Payload Sensor Suite) including the TWINS (a pair of Wind and Air temperature sensors)
package [Spiga et al. 2018; Banfield et al. 2019]. A full diurnal cycle of air temperature, pressure and wind
(speed and direction) obtained from InSight APSS Lander during northern winter, at Ls 295 (landing date) and Ls
315, are compared to data from MRAMS using eight nested grids centered over the landing site. The horizontal
grid spacing at the center of the eight grids is 240, 80, 26.7, 8.9, 2.96, 0.98, 0.33 and 0.11 km. We extend our
simulations over solstices and equinoxes (Ls 0, 90, 180 and 270).

For northern winter, previous works [Pla-Garcia et al. 2016] suggest strong northerly winds with afternoon
heating of the dichotomy producing an upslope flow that reinforce the northerly large-scale (Hadley Cell) surface
daytime winds. Furthermore, the source of air during northern winter is found to be from very deep within the
cold northern high latitudes [Pla-Garcia et al. 2018].

First modeling results for Ls 315 (InSight mission sol ~30) at ~2000-2200 LMST show a decrease in cooling rate
(a sudden and unexpected increase in air temperature) that could be produced by enhanced turbulence driven by
dynamically-induced downslope windstorms related to gravity wave activity, distinctly different than downslope
katabatic winds. This gravity wave amplification activity is produced by strong winds interacting with a sharp
topography feature, like Elysium Mons. These dynamic phenomena can oppose buoyancy forces and provide a
mechanism for warm air to descend or cold air to rise. These scenarios are fairly common near mountainous terrain
on Earth, and are responsible for downslope windstorms (e.g., Chinook winds in the lee of the Rocky Mountains
and Foehn winds in the lee of the Alps). Northern clouds captured by MSL Navcam during aphelion cloud belt
(ACB) could be putative gravity clouds sculpted by those same gravity waves generated by Elysium Mons and
highly related with nighttime turbulence at InSight landing site. Those same gravity waves could be produced tosol,
but without a visible counterpart. To study next ACB could be an interesting opportunity to validate this hypothesis.

At ~21:45-23:45 LMST, the modeling results for Ls 315 show an important increase in both wind velocity
(from ~5 to 10 m/s) and turbulent kinetic energy, that could be produced by enhanced turbulence driven by
an increasingly strong shear. As the nocturnal inversion develops, the winds above become decoupled from the
surface and the decrease in friction produces a net acceleration. Once the critical Richardson Number is reached
(Ri ~< 0.25), shear instabilities can mix warmer air aloft down to the surface.



